Skip to main content
Log in

Gene Flow between Potato Cultivars under Experimental Field Conditions in Argentina

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

Wild and cultivated potatoes form a polyploid series with 2n = 2x to 2n = 6x (x = 12). In nature, they are separated by external and/or internal hybridization barriers that, when incomplete, provide opportunities for gene flow and introgression. Isolation distances estimated in one environment are not necessary extrapolable. As a starting point for pollen-mediated gene flow risk assessment in potatoes, an experiment was set up in the field in one of the major potato growing area in Argentina, with two pollen-pistil compatible tetraploid commercial cultivars with differential molecular marker patterns. The field design consisted of a 10 × 10 m central square with the pollen donor, surrounded by circles with a male sterile pollen recipient, set every 10 m up to 40 m. The crop was managed as a perennial, and data were recorded over 2 years. Seeded berries were obtained in both years at 30 and 40 m away from the center; all of them contained hybrid seeds as revealed by electrophoretic profiles. We consider that a minimal required isolation distance of 100 m or more would be more suitable for preventing undesirable gene flow in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. EBN = Endosperm Balance Number

Abbreviations

PCR:

Polymerase chain reaction

SSR:

Simple sequence repeat

RAPD:

Random amplified polymorphic DNA

References

  • Abbott RJ, James JK, Milne RI, Gillies ACM (2003) Plant introductions, hybridization and gene flow. Philos Trans R Soc Lond B Biol Sci 358:1123–1132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arias DM, Rieseberg LH (1994) Gene flow between cultivated and wild sunflowers. Theor Appl Genet 89:655–666

    Article  CAS  PubMed  Google Scholar 

  • Arnaud JF, Viard F, Delescluse M, Cuguen J (2003) Evidence for gene flow via seed dispersal from crop to wild relatives in Beta vulgaris (Chenopodiaceae): Consequences for the release of genetically modified crop species with weedy lineages. Philos Trans R Soc Lond B Biol Sci 270:1565–1571

    Article  Google Scholar 

  • Arriola PE, Ellstrand NC (1996) Crop-to-weed flow in the genus Sorghum (Poaceae): Spontaneous interspecific hybridization between johnsongrass, Sorghum halepense, and crop sorghum, S. bicolor. Am J Bot 83:1153–1160

    Article  Google Scholar 

  • Bravo-Almonacid F, Rudoy V, Welin B, Segretin ME, Bedogni MC, Stolowicz F, Criscuolo M, Foti M, Gómez M, López M, Serino G, Cabral S, Dos Santos C, Huarte M, Mentaberry A (2011) Field testing, gene flow assessment and pre-commercial studies on transgenic Solanum tuberosum spp. tuberosum (cv. Spunta) selected for PVY resistance in Argentina. Transgenic Res 70:725–734

    Google Scholar 

  • Brown CR (1993) Outcrossing rate in cultivated autotetraploid potato. Am Potato J 70:725–734

    Article  Google Scholar 

  • Camadro EL (2010) Characterization of the natural genetic diversity of Argentinean potato species and manipulations for its effective use in breeding. Am J Plant Sci Biotechnol 3(Special issue 1):65–71

    Google Scholar 

  • Camadro EL, Masuelli RW (1995) A genetic model for the Endosperm Balance Number (EBN) in wild potato species. Sex Plant Reprod 8:283–288

    Article  Google Scholar 

  • Camadro EL, Peloquin SJ (1980) The occurrence and frequency of 2n pollen in three diploid Solanums from NW Argentina. Theor Appl Genet 56:11–15

    CAS  PubMed  Google Scholar 

  • Camadro EL, Carputo D, Peloquin SJ (2004) Substitutes for genome differentiation in tuber-bearing Solanum: Interespecific pollen-pistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theor Appl Genet 109:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Capurro MA, Camadro EL, Masuelli RW (2013) Pollen-mediated gene flow from a commercial potato cultivar to the wild relative S. chacoense Bitter under experimental field conditions in Argentina. Hereditas 150:60–65

    Article  PubMed  Google Scholar 

  • Chen LJ, Lee DS, Song ZP, Suh HS, Lu B (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot 93:67–73

    Article  CAS  PubMed  Google Scholar 

  • CONABIA (2011) http://www.minagri.gob.ar/SAGPyA/areas/biotecnologia/20-CONABIA/index.php (accessed April 2011)

  • Conner AJ, Dale PJ (1996) Reconsideration of pollen dispersal data from field trials of transgenic potatoes. Theor Appl Genet 92:505–508

    Article  CAS  PubMed  Google Scholar 

  • Debener T, Dohm A, Mattiesch L (2003) Use of diploid self-incompatible rose genotypes as a tool for gene flow analyses in roses. Plant Breed 122:285–287

    Article  CAS  Google Scholar 

  • Ehlenfeldt MK, Hanneman RE (1988) Genetic control of Endosperm Balance Number (EBN): Three additive loci in a threshold-like system. Theor Appl Genet 75:825–832

    Google Scholar 

  • Ellstrand NC, Devlin B, Marshall DM (1989) Gene flow by pollen into small populations: Data from experimental and natural stands of wild radish. Proc Natl Acad Sci U S A 86:9044–9047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erazzú LE, Camadro EL, Clausen AM (2009) Persistence over time, overlapping distribution and molecular indications of interspecific hybridization in wild potato populations of Northwest Argentina. Euphytica 168:249–262

    Article  Google Scholar 

  • FAOSTAT (2012). Food and Agriculture Organization of the United Nations http://www.fao.org/corp/statistics/es/ (accessed February 2012)

  • Goggi AS, López-Sánchez H, Caragea P, Westgate M, Arritt R, Clark CA (2007) Gene flow in maize fields with different local pollen densities. Int J Biometeorol 51:493–503

    Article  PubMed  Google Scholar 

  • Hadley HH, Openshaw SJ (1980) Interspecific and intergeneric hybridization. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. Am Soc Agron Crop Sci Soc Am, Madison, pp 133–159

    Google Scholar 

  • Hansen LB, Siegismund HR, Jørgensen RB (2001) Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genet Resour Crop Evol 48:621–627

    Article  Google Scholar 

  • Hawkes JG, Hjerting JP (1969) The potatoes of Argentina, Brazil Paraguay and Uruguay. A biosystematic study. Oxford University Press, Oxford

    Google Scholar 

  • Haymes KM (1996) Mini-prep method suitable for plant breeding programs. Plant Mol Biol Rep 14:280–284

    Article  CAS  Google Scholar 

  • Jenczewski EJ, Prosperi JM, Ronfort JL (1999) Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits. Am J Bot 86:677–687

    Article  CAS  PubMed  Google Scholar 

  • Johnston SA, den Nijs TPM, Peloquin SJ, Hannemann RE (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9

    CAS  PubMed  Google Scholar 

  • Levin DA, Kerster HW (1974) Gene flow in seed plants. Evol Biol 7:139–220

    Google Scholar 

  • Luna SV, Figueroa JM, Baltasar BM, Gómez RL, Townsend R, Schoper JB (2001) Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci 41:1551–1557

    Article  Google Scholar 

  • Mallet J (2007) Hybrid speciation. Nature 446:279–283

    Article  CAS  PubMed  Google Scholar 

  • Mavárez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M (2006) Speciation by hybridization in Heliconius butterflies. Nature 441:868–871

    Article  PubMed  Google Scholar 

  • McPartlan HC, Dale PJ (1994) An assessment of gene transfer by pollen from field-grown transgenic potatoes to non-transgenic potatoes and related species. Transgenic Res 3:216–225

    Article  Google Scholar 

  • Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R (1997) Comparison of PCR-based marker systems for the analysis of genomic relationship in cultivated potatoes. Mol Breed 3:127–136

    Article  CAS  Google Scholar 

  • MinAgri (2012): Ministerio de Agricultura, Ganadería y Pesca 1, http://www.siia.gov.ar/index.php/series-por-tema/agricultura (accessed February 2012)

  • Petti C, Meade C, Downes M, Mullins E (2007) Facilitating co-existence by tracking gene dispersal in conventional potato systems with microsatellite markers. Environ Biosaf Res 6:223–225

    Article  CAS  Google Scholar 

  • Ritala A, Nuutila AM, Aikasalo R, Kauppinen V, Tammisola J (2002) Measuring gene flow in the cultivation of transgenic barley. Crop Sci 42:278–285

    Article  CAS  PubMed  Google Scholar 

  • Ross H (1986) Potato breeding: Problems and perpectives. Verlag Paul Parey, Berlin and Hamburg

    Google Scholar 

  • Schittenhelm S, Hoekstra R (1995) Recommended isolation distances for the field multiplication of diploid tuber-bearing Solanum species. Plant Breed 114:369–371

    Article  Google Scholar 

  • Skogsmyr I (1994) Gene dispersal from transgenic potatoes to conspecifics: a field trial. Theor Appl Genet 88:770–774

    Article  CAS  PubMed  Google Scholar 

  • Tynan JL, Williams MK, Conner AJ (1990) Low frequency of pollen dispersal from a field trial of transgenic potatoes. J Gen Breed 44:303–305

    Google Scholar 

  • Ureta MS, Carrera AD, Cantamutto MA, Poverene MM (2008) Gene flow among wild and cultivated sunflower, Helianthus annuus, in Argentina. Agric Ecosyst Environ 123:343–349

    Article  Google Scholar 

  • Van Deynze AE, Sundstrom FJ, Bradford KJ (2005) Pollen-mediated gene flow in California cotton depends on pollinator activity. Crop Sci 45:1565–1570

    Article  Google Scholar 

  • Walther-Hellwig K, Frankl R (2000) Foraging distances of Bombus muscorum, Bombus lapidarius, and Bombus terrestris (Hymenoptera, Apidae). J Insect Behav 13:239–246

    Article  Google Scholar 

  • Warwick SI, Simard MJ, Legere A, Beckie HJ, Braun L, Zhu B, Mason P, Seguin-Swartz G, Stewart CN (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.). Theor Appl Genet 107:528–539

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper is part of the first author’s Doctoral thesis. This work was financed by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Plurianual Research Project 112 20080100116) and Universidad Nacional de Mar del Plata (UNMdP, project AGR 283/09). The infrastructure and experimental field were provided by Instituto Nacional de Tecnología Agropecuaria (INTA)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Camadro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capurro, M.A., Camadro, E.L. & Masuelli, R.W. Gene Flow between Potato Cultivars under Experimental Field Conditions in Argentina. Potato Res. 57, 111–122 (2014). https://doi.org/10.1007/s11540-014-9255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-014-9255-3

Keywords

Navigation