Skip to main content
Log in

A Multiscale Approach to the Migration of Cancer Stem Cells: Mathematical Modelling and Simulations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We propose a multiscale model for the invasion of the extracellular matrix by two types of cancer cells, the differentiated cancer cells and the cancer stem cells. We investigate the epithelial mesenchymal-like transition between them being driven primarily by the epidermal growth factors. We moreover take into account the transdifferentiation program of the cancer stem cells towards the cancer-associated fibroblast cells as well as the fibroblast-driven remodelling of the extracellular matrix. The proposed haptotaxis model combines the macroscopic phenomenon of the invasion of the extracellular matrix by both types of cancer cells with the microscopic dynamics of the epidermal growth factors. We analyse our model in a component-wise manner and compare our findings with the literature. We investigate pathological situations regarding the epidermal growth factors and accordingly propose “mathematical-treatment” scenarios to control the aggressiveness of the tumour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. First introduced in Keller and Segel (1970) to describe the aggregations of slime mould.

References

  • Alt W, Lauffenburger DA (1987) Transient behavior of a chemotaxis system modelling certain types of tissue inflammation. J Math Biol 24(6):691–722

    Article  MathSciNet  MATH  Google Scholar 

  • Andasari V, Gerisch A, Lolas G, South AP, Chaplain MAJ (2011) Mathematical modelling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Math Biol 63(1):141–171

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson ARA, Chaplain MAJ, Newman EL, Steele RJC, Thompson AM (2000) Mathematical modelling of tumour invasion and metastasis. Comput Math Methods Med 2(2):129–154

    MATH  Google Scholar 

  • Armitage P, Doll R (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8(1):1

    Article  Google Scholar 

  • Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(04):593–646

    Article  MathSciNet  MATH  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5(9):744–749

    Article  Google Scholar 

  • Bray D (2001) Cell movements: from molecules to motility. Garland Science, New York

    Google Scholar 

  • Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue. The role of the urokinase plasminogen activation system. Math Models Methods Appl Sci 15(11):1685–1734

    Article  MathSciNet  MATH  Google Scholar 

  • Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Models Mech 4(2):165–178

    Article  Google Scholar 

  • Domschke P, Trucu D, Gerisch A, Chaplain MAJ (2014) Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J Theor Biol 361:41–60

    Article  MathSciNet  MATH  Google Scholar 

  • Eladdadi A, Isaacson D (2008) A mathematical model for the effects of HER2 overexpression on cell proliferation in breast cancer. Bull Math Biol 70:1707–1729

    Article  MathSciNet  MATH  Google Scholar 

  • Erler JT, Weaver VW (2009) Three-dimensional context regulation of metastasis. Clin Exp Metastasis 26(1):35–49

    Article  Google Scholar 

  • Fan YL, Zheng M, Tang YL, Liang XH (2013) A new perspective of vasculogenic mimicry: EMT and cancer stem cells (review). Oncol Lett 6(5):1174–1180

    Google Scholar 

  • Fisher JC (1958) Multiple-mutation theory of carcinogenesis. Nature 181(4609):651–652

    Article  Google Scholar 

  • Ganguly R, Puri IK (2006) Mathematical model for the cancer stem cell hypothesis. Cell Proliferat 39(1):3–14

    Article  Google Scholar 

  • Gao D, Vahdat LT, Wong S, Chang JC, Mittal V (2012) Microenvironmental regulation of epithelial–mesenchymal transitions in cancer. Cancer Res 72(19):4883–4889

    Article  Google Scholar 

  • Gerisch A, Chaplain MAJ (2006) Robust numerical methods for taxis-diffusion-reaction systems: applications to biomedical problems. Math Comput Model 43(1):49–75

    Article  MathSciNet  MATH  Google Scholar 

  • Gerisch A, Chaplain MAJ (2008) Mathematical modelling of cancer cell invasion of tissue: local and nonlocal models and the effect of adhesion. J Theor Biol 250(4):684–704

    Article  MathSciNet  Google Scholar 

  • Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15(9):1010–1012

    Article  Google Scholar 

  • Hellmann N, Kolbe N, Sfakianakis N (2016) A mathematical insight in the epithelial–mesenchymal-like transition in cancer cells and its effect in the invasion of the extracellular matrix. Bull Braz Math Soc 47(1):397–412

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter K (2012) Transport models for movement in oriented habitats and anisotropic diffusion. In: Petrovskii S, Lewis MA, Maini P (eds) Dispersal, individual movement and spatial ecology: a mathematical perspective. Springer, Heidelberg

    Google Scholar 

  • Hillen T, Painter K (2013) Mathematical modelling of glioma growth: the use of diffusion tensor imaging (dti) data to predict the anisotropic pathways of cancer invasion. J Theor Biol 323:25–39

    Article  MathSciNet  MATH  Google Scholar 

  • Hundsdorfer W, Verwer JG (2003) Numerical solution of time-dependent advection-diffusion-reaction equations, vol 33. Springer, Heidelberg

    MATH  Google Scholar 

  • Imai Y, Leung CKH, Friesen HG, Shiu RPC (1982) Epidermal growth factor receptors and effect of epidermal growth factor on growth of human breast cancer cells in long-term tissue culture. Cancer Res 42(11):4394–4398

    Google Scholar 

  • Jeulin C, Seltzer V, Bailbé D, Andreau DK, Marano F (2008) EGF mediates calcium-activated chloride channel activation in the human bronchial epithelial cell line 16HBE14o-: involvement of tyrosine kinase p60c-src. Am J Physiol Lung Cell Mol Physiol 295(3):L489–L496

    Article  Google Scholar 

  • Johnston MD, Maini PK, Jonathan-Chapman S, Edwards CM, Bodmer WF (2010) On the proportion of cancer stem cells in a tumour. J Theor Biol 266(4):708–711

    Article  MathSciNet  Google Scholar 

  • Jordan CT, Guzman M, Noble ML (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  Google Scholar 

  • Katsumo Y, Lamouille S, Derynck R (2013) TGF-\(\beta \) signaling and epithelial–mesenchymal transition in cancer progression. Curr Opin Oncol 25(1):76–84

    Article  Google Scholar 

  • Kawamoto T, Mendelsohn J, Le A, Sato GH, Lazar CS, Gill GN (1984) Relation of epidermal growth factor receptor concentration to growth of human epidermoid carcinoma A431 cells. J Biol Chem 259(12):7761–7766

    Google Scholar 

  • Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26(3):399–415

    Article  MATH  Google Scholar 

  • Kennedy CA, Carpenter MH (2003) Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl Numer Math 1(44):139–181

    Article  MathSciNet  MATH  Google Scholar 

  • Kim DH, Han K, Gupta K, Kwon KW, Suh KY, Levchenko A (2009) Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30(29):5433–5444

    Article  Google Scholar 

  • Kim Y, Friedmann A (2010) Interaction of tumor with its micro-environment: a mathematical model. Bull Math Biol 72(5):1029–1068

    Article  MathSciNet  MATH  Google Scholar 

  • Klein P, Mattoon D, Lemmon MA, Schlessinger J (2004) A structure-based model for ligand binding and dimerization of EGF receptors. Proc Natl Acad Sci USA 101(4):929–934

    Article  Google Scholar 

  • Kolbe N, Kat’uchová J, Sfakianakis N, Hellmann N, Lukáčová-Medvid’ová M (2016) A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion : the urokinase model. Appl Math Comput 273:353–376

    MathSciNet  Google Scholar 

  • Kong D, Li Y, Wang Z, Sarkar FH (2011) Cancer stem cells and epithelial-to-mesenchymal transition (emt)-phenotypic cells: are they cousins or twins? Cancers 3:716–729

    Article  Google Scholar 

  • Kurganov A, Lukáčová-Medvid’ová M (2014) Numerical study of two-species chemotaxis models. Discrete Continuous Dyn Syst Ser B 19(1):131–152

    Article  MathSciNet  MATH  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ, Sheratt JA (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64(4):673–702

    Article  MATH  Google Scholar 

  • Mendelsohn J, Baselga J (2000) The egf receptor family as targets for cancer therapy. Oncogene 19:6550–6555

    Article  Google Scholar 

  • Michor F (2008) Mathematical models of cancer stem cells. J Clin Oncol 26(17):2854–2861

    Article  Google Scholar 

  • Neagu A, Mironov V, Kosztin I, Barz B, Neagu M, Moreno-Rodriguez RA, Markwald RR, Forgacs G (2010) Computational modelling of epithelial–mesenchymal transformations. Biosystems 100(1):23–30

    Article  Google Scholar 

  • Nordling CO (1953) A new theory on the cancer-inducing mechanism. Br J Cancer 7(1):68

    Article  Google Scholar 

  • Özcan F, Klein P, Lemmon MA, Lax I, Schlessinger J (2006) On the nature of low- and high-affinity EGF receptors on living cells. Proc Natl Acad Sci USA 103(15):5735–5740

    Article  Google Scholar 

  • Pareschi L, Russo G (2005) Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J Sci Comput 25(1–2):129–155

    MathSciNet  MATH  Google Scholar 

  • Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM (1996) Biological inferences from a mathematical model for malignant invasion. Invasion Metastasis 16(4–5):209–221

    Google Scholar 

  • Preziosi L (2003) Cancer modelling and simulation. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Radisky DC (2005) Epithelial–mesenchymal transition. J Cell Sci 118(19):4325–4326

    Article  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  Google Scholar 

  • Robbins KC, Summaria L, Elwyn D, Barlow GH (1965) Further studies on the purification and characterization of human plasminogen and plasmin. J Biol Chem 240(1):541–550

    Google Scholar 

  • Sasaki T, Hiroki K, Yamashita Y (2013) The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res Int 2013:546318. doi:10.1155/2013/546318

  • Shien K, Toyooka S, Yamamoto H, Soh J, Jida M, Thu KL, Hashida S, Makl Y, Ichlhara E, Asano H, Tsukuda K, Taglkawa N, Klura K, Gazdar AF, Lam WL, Miyoshil S (2013) Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res 73(10):3051–3061

    Article  Google Scholar 

  • Stiehl T, Marciniak-Czochra A (2012) Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math Model Nat Phenom 7(01):166–202

    Article  MathSciNet  MATH  Google Scholar 

  • Stinner C, Surulescu C, Uatay A (2015) Global existence for a go-or-grow multiscale model for tumor invasion with therapy. Preprint on webpage at http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-42943

  • Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152(3):377–403

    Article  Google Scholar 

  • Stokes CL, Lauffenburger DA, Williams SK (1991) Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci 99(2):419–430

    Google Scholar 

  • Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  Google Scholar 

  • Vainstein V, Kirnasovsky OU, Kogan Y, Agur Z (2012) Strategies for cancer stem cell elimination: insights from mathematical modelling. J Theor Biol 298:32–41

    Article  MathSciNet  Google Scholar 

  • Van Leer B (1977) Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J Comput Phys 23(3):276–299

    Article  MATH  Google Scholar 

  • Voon DC, Wang H, Koo JKW, Chai JH, Hor YT, Tan TZ, Chu YS, Mori S, Ito Y (2013) EMT-induced stemness and tumorigenicity are fueled by the EGFR/Ras pathway. PLoS ONE 8(8):e70427

    Article  Google Scholar 

  • Zhu X, Zhou X, Lewis MT, Xia L, Wong S (2011) Cancer stem cell, niche and EGFR decide tumor development and treatment response: a bio-computational simulation study. J Theor Biol 269(1):138–149

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Sfakianakis.

Appendix

Appendix

1.1 Experiment Description

Here, we give technical details on the experiments that have been presented in this work. Our one-dimensional simulations have been computed on the domain \(\Omega \,{=}\,[0,7.5]\) with the initial conditions (26), and the experiments in two dimensions have been conducted on \(\Omega \,{=}\,[-5,5]^2\) with the initial data (27), (28). Wherever not otherwise stated, we have employed the parameters from Table 1.

The space and time domains are chosen such that we avoid interference on the wave propagation by the boundary conditions.

Experiment Ia

One-dimensional, EGF-driven EMT With parameters from Table 1 except for \(\mu _0 \,{=}\, 0.55, \ k_D\,{=}\, 0.5,\ \Gamma \,{=}\, 7.5^{-1}.\) See also Figs. 2 and 7. The convergence study (see Table 2) and the sensitivity analysis, see Table 3, have been conducted on a smaller domain \(\Omega _S\,{=}\,[0,3]\).

Experiment Ib

One-dimensional, adjusted EMT The parameters have been adjusted, so that the invasiveness of the CSCs coincides with the Experiment IIa: \(\mu _0 \,{=}\, 0.034,\ \mu _{1/2}\,{=}\, 0.4,\ k_D\,{=}\, 0.2, \ \lambda ^D \,{=}\, 3,\ \Gamma \,{=}\, 7.5^{-1}.\) See also Fig. 5 (middle row).

Experiment Ic

One-dimensional, adjusted EMT & low EGF Same as Experiment Ib, with low EGF concentration: \(\mu _0 \,{=}\, 0.034,\ \mu _{1/2}= 0.4,\ k_D\,{=}\, 0.2, \ \lambda ^D = 3,\ \Gamma \,{=}\, 10^{-3}.\) See also Fig. 5 (lower row).

Experiment Id

Adjusted EMT & low initial DCC concentration Same parameters as in Experiment Ib. Advection and diffusion terms were neglected. The initial conditions \(c_0^D \,{=}\, 10^{-3},\ c_0^S \,{=}\, 0, \ c_0^F\,{=}\, 0,\ v_0\,{=}\, 1,\ m_0\,{=}\, 10^{-6}\) have been employed. See also Fig. 6 (left).

Experiment IIa

One-dimensional, constant EMT rate Our EMT model from Sect. 2.2 has been neglected, and the EMT transition coefficient in system (17) has been taken as a constant: \(\mu _\text {EMT}\,{=}\, 0.017\). The invasiveness of the CSCs coincides with Experiment Ib. See Fig. 5 (upper row).

Experiment IIb

Constant EMT rate & low initial DCC concentration Same parameters as in Experiment IIa. Advection and diffusion terms were neglected. The initial conditions \(c_0^D \,{=}\, 10^{-3},\ c_0^S \,{=}\, 0, \ c_0^F\,{=}\, 0,\ v_0\,{=}\, 1,\ m_0 \,{=}\, 10^{-6}, \) have been employed as in Experiment Id. See also Fig. 6 (right).

Experiment IIIa

Two-dimensional, uniform ECM & fibroblast remodelling Parameters from Table 1. See Figs.  3 and 4 (lower row).

Experiment IIIb

Two-dimensional, uniform ECM & no remodelling Same as Experiment IIIa, without matrix remodelling: \(\mu _v = 0\). See Fig. 4 (upper row).

Experiment IIIc

Two-dimensional, uniform ECM & self-remodelling Same as Experiment IIIa, with self-remodelling, i.e. the term \(+ \mu _v\, c^\text {F}\, (1-c^\text {D}-c^\text {S}-c^\text {F}-v)^+\) for the ECM in system (17) has been replaced by \(+ \mu _v\, v\, (1-c^\text {D}-c^\text {S}-c^\text {F}-v)^+\), hence the fibroblasts have been neglected. See Fig. 4 (middle row).

Experiment IIId

Two-dimensional, uniform ECM & fibroblast remodelling & smooth initial dataSame as Experiment IIIa with smooth initial data for the convergence study, see Table 2:

$$\begin{aligned} c^\text {D}_0(\mathbf x)= & {} \exp (-\Vert \mathbf x\Vert _2^2), \ c^\text {S}_0(\mathbf x) = c^\text {F}_0(\mathbf x)=0, \ v_0(\mathbf x) = 1 - c^\text {D}_0(\mathbf x), \ m_0(\mathbf x) \nonumber \\= & {} \frac{1}{20} \, c^\text {D}_0(\mathbf x), \quad \mathbf x=(x_1,x_2)\in \Omega . \end{aligned}$$

Experiment IVa

Two-dimensional, non-uniform ECM Same as Experiment IIIa with an ECM initial concentration \(v_0\) different from (28). The non-uniform initial ECM \(v_0\) has been constructed by a random distribution of fibroblast cell concentrations acting without other influences on the domain. We have conducted the simulation on a \(100 \,{\times }\, 100\) computational grid (lower resolution as opposed to the other experiments). See Fig. 8 lower row.

Experiment IVb

Two-dimensional, non-uniform ECM Similar to Experiment IVa, the non-uniform initial ECM \(v_0\) has been constructed by a random distribution of fibroblast cell concentrations acting on the domain. As a result the initial ECM concentration is different from the case in Experiment IVa. We have conducted the simulation using the standard grid resolution with 250 \(\times \) 250 mesh cells. See also Fig. 9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sfakianakis, N., Kolbe, N., Hellmann, N. et al. A Multiscale Approach to the Migration of Cancer Stem Cells: Mathematical Modelling and Simulations. Bull Math Biol 79, 209–235 (2017). https://doi.org/10.1007/s11538-016-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0233-6

Keywords

Navigation