Skip to main content

Advertisement

Log in

Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Dengue fever has rapidly become the world’s most common vector-borne viral disease. Use of endosymbiotic Wolbachia is an innovative technology to prevent vector mosquitoes from reproducing and so break the cycle of dengue transmission. However, strategies such as population eradication and replacement will only succeed if appropriate augmentations with Wolbachia-infected mosquitoes that take account of a variety of factors are carried out. Here, we describe the spread of Wolbachia in mosquito populations using an impulsive differential system with four state variables, incorporating the effects of cytoplasmic incompatibility and the augmentation of Wolbachia-infected mosquitoes with different sex ratios. We then evaluated (a) how each parameter value contributes to the success of population replacement; (b) how different release quantities of infected mosquitoes with different sex ratios affect the success of population suppression or replacement; and (c) how the success of these two strategies can be realized to block the transmission of dengue fever. Analysis of the system’s stability, bifurcations and sensitivity reveals the existence of forward and backward bifurcations, multiple attractors and the contribution of each parameter to the success of the strategies. The results indicate that the initial density of mosquitoes, the quantities of mosquitoes released in augmentations and their sex ratios have impacts on whether or not the strategies of population suppression or replacement can be achieved. Therefore, successful strategies rely on selecting suitable strains of Wolbachia and carefully designing the mosquito augmentation program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bhatt S, Gething PW, Brady OJ et al (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  Google Scholar 

  • Bian GW, Xu Y, Lu P et al (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6(4):e1000833

  • Blower SM, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 62:229–243

    Article  MATH  Google Scholar 

  • Bull JJ, Turelli M (2013) Wolbachia versus dengue evolutionary forecasts. Evol Med Public Health 2013:197–207

    Article  Google Scholar 

  • Burattini MN, Chen M, Chow A et al (2008) Modelling the control strategies against dengue in Singapore. Epidemiol Infect 136:309–319

    Article  Google Scholar 

  • Chen B, Liu Q (2015) Dengue fever in China. Lancet 385:1621–1622

    Article  Google Scholar 

  • China Daily (2015) Mosquitoes released in fight against dengue fever. http://africa.chinadaily.com.cn/china/2015-08/03/content_21482813.htm

  • Farkas JZ, Hinow P (2010) Structured and unstructured continuous models for Wolbachia infections. Bull Math Biol 72:2067–2088

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky M, Schaeffer DG (1985) Singularities and groups in bifurcation theory. Springer, New York

    Book  MATH  Google Scholar 

  • Gourley SA, Liu R, Wu J (2007) Eradicating vector-borne diseases via age-structured culling. J Math Biol 54:309–335

    Article  MathSciNet  MATH  Google Scholar 

  • Haygood R, Turelli M (2009) Evolution of incompatibility inducing microbes in subdivided host populations. Evolution 63:432–447

    Article  Google Scholar 

  • Hoffmann AA, Montgomery BL, Popovici J et al (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–457

  • Hu X, Liu Y, Wu J (2009) Culling structured hosts to eradicate vector-borne diseases. Math Bios Eng 325:496–516

    MathSciNet  MATH  Google Scholar 

  • Hughes H, Britton NF (2013) Modelling the use of Wolbachia to control dengue fever transmission. Bull Math Biol 75:796–818

    Article  MathSciNet  MATH  Google Scholar 

  • International Business Times (2015) Chinese researchers develop mosquitoes that prevent spread of dengue. http://www.ibtimes.com/chinese-researchers-develop-mosquitoes-prevent-spread-dengue-2039899

  • Iturbe-dOrmaetxe I, Walker T, O’Neill SL (2011) Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 12:508–518

    Article  Google Scholar 

  • James S, Simmons CP, James AA (2011) Ecology: mosquito trials. Science 334:771–772

    Article  Google Scholar 

  • Jansen VAA, Turelli M, Godfray HCJ (2008) Stochastic spread of Wolbachia. Proc R Soc B 275:2769–2776

    Article  Google Scholar 

  • Keeling MJ, Jiggins FM, Read JM (2003) The invasion and coexistence of competing Wolbachia strains. Heredity 91:382–388

    Article  Google Scholar 

  • Kittayapong P, Baisley KJ, Baimai V et al (2000) Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol 37:340–345

    Article  Google Scholar 

  • Kittayapong P, Baisley KJ, Sharpe RG et al (2002) Maternal transmission efficiency of Wolbachia superinfections in Aedes albopictus populations in Thailand. Am J Trop Med Hyg 66:103–107

  • Lai S, Huang Z, Zhou H et al (2015) The changing epidemiology of dengue in China, 1990–2014: a descriptive analysis of 25 years of nationwide surveillance data. BMC Med 13:1

    Article  Google Scholar 

  • Lakmeche A, Arino O (2000) Bifurcation of non-trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dyn Contin Discrete Impuls Syst 7:265–287

    MathSciNet  MATH  Google Scholar 

  • Lambrechts L, Ferguson NM, Harris E et al (2015) Assessing the epidemiological effect of Wolbachia for dengue control. Pers View 15:862–866

    Google Scholar 

  • Laven H (1967) Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216:383–384

  • Marino S, Ian B, Hogue IB et al (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    Article  MathSciNet  Google Scholar 

  • McGraw EA, O’Neill SL (2013) Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol 11:181–93

    Article  Google Scholar 

  • McMeniman CJ, Lane RV, Cass BN et al (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144

  • Mehta N (2014) Brazil releases Wolbachia infected mosquitoes to fight dengue. http://www.livemint.com/Consumer/T8Ok070nJy1O4zlW5C93aP/Brazil-releases-Wolbachia-infected-mosquitoes-to-fight-dengu.html

  • Ndii MZ, Hickson RI, Allingham D et al (2015) Modelling the transmission dynamics of dengue in the presence of Wolbachia. Math Biosci 262:157–166

    Article  MathSciNet  MATH  Google Scholar 

  • Rigau-Pérez JG (2006) Severe dengue: the need for new case definitions. Lancet Infect Dis 6:297–302

    Article  Google Scholar 

  • Ritter L, Solomon KR, Forget J et al (1995) A review of selected persistent organic pollutants. World Health Organization, Geneva

    Google Scholar 

  • Schofield PG (2002) Spatially explicit models of Turelli–Hoffmann Wolbachia invasive wave fronts. J Theor Biol 215:121–131

    Article  MathSciNet  Google Scholar 

  • Simons RRL, Gourley SA (2006) Extinction criteria in stage-structured population models with impulsive culling. SIAM J Appl Math 66:1853–1870

    Article  MathSciNet  MATH  Google Scholar 

  • Tang SY, Tang B, Wang AL et al (2015) Holling II predator-prey impulsive semi-dynamic model with complex Poincare map. Nonlinear Dyn 81:1575–1596

    Article  MathSciNet  Google Scholar 

  • The Guardian (2015) Sterile mosquitoes released in China to fight dengue fever. http://www.theguardian.com/world/2015/may/24/sterile-mosquitoes-released-in-china-to-fight-dengue-fever

  • Turelli M (1994) Evolution of incompatibility inducing microbes and their hosts. Evolution 48:1500–1513

    Article  Google Scholar 

  • Turelli M (2010) Cytoplasmic incompatibility in population with overlapping generations. Evolution 64:232–241

    Article  Google Scholar 

  • Vautrin E, Charles S, Genieys S et al (2007) Evolution and invasion dynamics of multiple infections with Wolbachia investigated using matrix based models. J Theor Biol 245:197–209

    Article  MathSciNet  Google Scholar 

  • VED (2014) Vietnam-Eliminate Dengue. http://www.eliminatedengue.com/vietnam/faqs

  • Walker T, Johnson PH, Moreira LA et al (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476:450–453

  • Waltz E (2016) US reviews plan to infect mosquitoes with bacteria to stop disease. Nature 533:450–451

    Article  Google Scholar 

  • Wang WD (2006) Backward bifurcation of an epidemic model with treatment. Math Biosci 201:58–71

    Article  MathSciNet  MATH  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  Google Scholar 

  • World Health Organisation (2012) Impact of dengue. http://www.who.int/csr/disease/dengue/impact/en/

  • Xi ZY, Khoo CCH, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 14:326–328

  • Xu XX, Xiao YN, Cheke RA (2014) Models of impulsive culling of mosquitoes to interrupt transmission of West Nile virus to birds. Appl Math Model 39:3549–3568

    Article  MathSciNet  Google Scholar 

  • Yang HM, Macoris MLG, Galvani KC et al (2009) Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137:1188–1202

  • Yeap HL, Mee P, Walker T et al (2011) Dynamics of the ’popcorn’ Wolbachia infection in Aedes aegypti in an outbred background. Genetics 187:583–595

  • Zhang XH, Tang SY, Cheke RA (2015a) Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control. Nonlinear Anal-Real 35:236–258

  • Zhang XH, Tang SY, Cheke RA (2015b) Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations. Math Biosci 269:164–177

  • Zhang DJ, Zheng XY, Xi ZY et al (2015c) Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus. PLoS One 10(4):e0121126

  • Zheng B, Tang MX, Yu JS (2014) Modeling Wolbachia spread in mosquitoes through delay differential equations. SIAM J Appl Math 74:743–770

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Tang is partially supported by the National Natural Science Foundation of China (NSFCs 11171199, 11471201, 11601268) and by the Fundamental Research Funds for the Central Universities (GK201305010, GK201401004, KJ1600522). Zhu is partially supported by NSERC and CIHR of Canada. Zhang is partially supported by Excellent Doctoral Dissertation of Shaanxi Normal University (S2014YB01). We thank the anonymous referees for their careful reading and comments which helped to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyi Tang.

Appendices

Appendix 1: The Expression of Each Element of \(D_XN(\bar{\theta }_1,\bar{X})\)

First from (26) and derivative of a multivariate compound function, we have the expression of each element of \(D_XN(\bar{\theta }_1,\bar{X})\) as follows

$$\begin{aligned} \left\{ \begin{array}{l} a_{ij}=-\sum \limits _{k=1}^{4}\frac{\partial {I_i(\theta _0+\bar{\theta }_1,X_0+\bar{X})}}{\partial {X_k}}\frac{\Phi _k(X_0+\bar{X})}{\partial {X_j}},i\ne j,\\ a_{ii}=1-\sum \limits _{k=1}^{4}\frac{\partial {I_i(\theta _0+\bar{\theta }_1,X_0+\bar{X})}}{\partial {X_k}}\frac{\Phi _k(X_0+\bar{X})}{\partial {X_i}},i= j.\\ \end{array} \right. \end{aligned}$$

According to (27), we have the differential equations of derivatives of \(\Phi =(\Phi _1,\Phi _2,\Phi _3,\Phi _4)\) for \((\bar{\theta }_1,\bar{X})=(0,0)\) with respect to \(X=(X_1,X_2,X_3,X_4).\) Note that

$$\begin{aligned} \left\{ \begin{array}{l} \frac{d}{{d}t}\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_1}}=(b_1(1-q)-d(\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_1}},\ \frac{\partial {\Phi _3}}{\partial {X_1}}(0,X_0)=0,\\ \frac{d}{{d}t}\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_1}}=b_1(1-q)\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_1}}-d(\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_1}},\ \frac{\partial {\Phi _4}}{\partial {X_1}}(0,X_0)=0,\\ \frac{d}{{d}t}\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_2}}=(b_1(1-q)-d(\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_2}},\ \frac{\partial {\Phi _3}}{\partial {X_2}}(0,X_0)=0,\\ \frac{d}{{d}t}\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_2}}=b_1(1-q)\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_2}}-d(\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_2}},\ \frac{\partial {\Phi _4}}{\partial {X_2}}(0,X_0)=0.\\ \end{array} \right. \end{aligned}$$

So we obtain

$$\begin{aligned} \frac{\partial {\Phi _i}}{\partial {X_j}}(t,X_0)\equiv 0,i=3,4,j=1,2, \end{aligned}$$
(41)

for \(0\leqslant t<T.\) Then we have

$$\begin{aligned} \left\{ \begin{array}{l} \frac{d}{{d}t}\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_1}}=(b_2-(d+D)(2\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_1}}-(d+D)\tilde{F}_I\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_1}},\ \frac{\partial {\Phi _1}}{\partial {X_1}}(0,X_0)=1,\\ \frac{d}{{d}t}\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_2}}=(b_2-(d+D)(2\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_2}}-(d+D)\tilde{F}_I\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_2}},\ \frac{\partial {\Phi _1}}{\partial {X_2}}(0,X_0)=0,\\ \frac{d}{{d}t}\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_1}}=(b_2-(d+D)\tilde{M}_I)\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_1}}-(d+D)(\tilde{F}_I+2\tilde{M}_I)\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_1}},\ \frac{\partial {\Phi _2}}{\partial {X_1}}(0,X_0)=0,\\ \frac{d}{\hbox {d}t}\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_2}}=(b_2-(d+D)\tilde{M}_I)\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_2}}-(d+D)(\tilde{F}_I+2\tilde{M}_I)\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_2}},\ \frac{\partial {\Phi _2}}{\partial {X_2}}(0,X_0)=1.\\ \end{array} \right. \end{aligned}$$

So the solution \(\frac{\partial {\Phi _i}}{\partial {X_j}}(t,X_0)(i,j=1,2)\) of the above system for \(0\leqslant t<T\) can be solved which is not identically equal to zero. Further, we have

$$\begin{aligned} \left\{ \begin{array}{lllllll} \frac{d}{{d}t}\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_3}} &{}=(b_2-(d+D)(2\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_3}}-(d+D)\tilde{F}_I\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_3}}\\ &{}\quad -(d+D)\tilde{F}_I\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_3}}-(d+D)\tilde{F}_I\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_3}},\ \frac{\partial {\Phi _1}}{\partial {X_3}}(0,X_0)=0,\\ \frac{d}{{d}t}\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_4}} &{}=(b_2-(d+D)(2\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_4}}-(d+D)\tilde{F}_I\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_4}}\\ &{}\quad -(d+D)\tilde{F}_I\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_4}}-(d+D)\tilde{F}_I\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_4}},\ \frac{\partial {\Phi _1}}{\partial {X_4}}(0,X_0)=0,\\ \frac{d}{{d}t}\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_3}} &{}=(b_2-(d+D)\tilde{M}_I)\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_3}}-(d+D)(\tilde{F}_U+2\tilde{M}_U)\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_3}}\\ &{}\quad -(d+D)\tilde{M}_I\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_3}}-(d+D)\tilde{M}_I\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_3}},\ \frac{\partial {\Phi _2}}{\partial {X_3}}(0,X_0)=0,\\ \frac{d}{{d}t}\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_4}} &{}=(b_2-(d+D)\tilde{M}_I)\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_4}}-(d+D)(\tilde{F}_U+2\tilde{M}_U)\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_4}}\\ &{}\quad -(d+D)\tilde{M}_I\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_4}}-(d+D)\tilde{M}_I\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_4}},\ \frac{\partial {\Phi _2}}{\partial {X_4}}(0,X_0)=0,\\ \frac{d}{{d}t}\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_3}}&{}=(b_1(1-q)-d(\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_3}},\ \frac{\partial {\Phi _3}}{\partial {X_3}}(0,X_0)=1,\\ \frac{d}{{d}t}\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_4}}&{}=(b_1(1-q)-d(\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_4}},\ \frac{\partial {\Phi _3}}{\partial {X_4}}(0,X_0)=0,\\ \frac{d}{{d}t}\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_3}}&{}=b_1(1-q)\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_3}}-d(\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_3}},\ \frac{\partial {\Phi _4}}{\partial {X_3}}(0,X_0)=0,\\ \frac{d}{{d}t}\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_4}}&{}=b_1(1-q)\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_4}}-d(\tilde{F}_I+\tilde{M}_I))\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_4}},\ \frac{\partial {\Phi _4}}{\partial {X_4}}(0,X_0)=1.\\ \end{array} \right. \end{aligned}$$

We can solve the above equations and give the expression of solutions for the last four equations as follows:

$$\begin{aligned} \frac{\partial {\Phi _3}}{\partial {X_3}}(t,X_0)= & {} {\mathrm e}^{\int _{0}^t(b_1(1-q)-d(\tilde{F}_I+\tilde{M}_I))\mathrm{d}\eta }\triangleq \beta (t),\ \frac{\partial {\Phi _3}}{\partial {X_4}}(t,X_0)\equiv 0,\nonumber \\ \frac{\partial {\Phi _4}}{\partial {X_3}}(t,X_0)= & {} {\mathrm e}^{b_1(1-q)\int _{0}^t\beta (s) ds},\ \frac{\partial {\Phi _4}}{\partial {X_4}}(t,X_0)={\mathrm e}^{\int _{0}^t(-d(\tilde{F}_I+\tilde{M}_I))\mathrm{d}\eta }. \end{aligned}$$
(42)

Thus, the expression of each element of \(D_XN(0,O)\) is as follows:

$$\begin{aligned} a^{'}_{11}= & {} 1-\frac{\partial {\Phi _1}}{\partial {X_1}}(T,X_0),\ \ a^{'}_{21}=-\frac{\partial {\Phi _2}}{\partial {X_1}}(T,X_0),\nonumber \\ a^{'}_{12}= & {} -\frac{\partial {\Phi _1}}{\partial {X_2}}(T,X_0),\ \ a^{'}_{22}=1-\frac{\partial {\Phi _2}}{\partial {X_2}}(T,X_0),\nonumber \\ a^{'}_{13}= & {} -\frac{\partial {\Phi _1}}{\partial {X_3}}(T,X_0),\ \ a^{'}_{23}=-\frac{\partial {\Phi _2}}{\partial {X_3}}(T,X_0),\nonumber \\ a^{'}_{14}= & {} -\frac{\partial {\Phi _1}}{\partial {X_4}}(T,X_0),\ \ a^{'}_{24}=-\frac{\partial {\Phi _2}}{\partial {X_4}}(T,X_0),\nonumber \\ a^{'}_{31}= & {} -\frac{\partial {\Phi _3}}{\partial {X_1}}(T,X_0)=0,\ \ a^{'}_{41}=-\frac{\partial {\Phi _4}}{\partial {X_1}}(T,X_0)=0,\nonumber \\ a^{'}_{32}= & {} -\frac{\partial {\Phi _3}}{\partial {X_2}}(T,X_0)=0,\ \ a^{'}_{42}=-\frac{\partial {\Phi _4}}{\partial {X_2}}(T,X_0)=0,\nonumber \\ a^{'}_{33}= & {} 1-\frac{\partial {\Phi _3}}{\partial {X_3}}(T,X_0),\ \ a^{'}_{43}=-\frac{\partial {\Phi _4}}{\partial {X_3}}(T,X_0),\nonumber \\ a^{'}_{34}= & {} -\frac{\partial {\Phi _3}}{\partial {X_4}}(T,X_0)=0,\ \ a^{'}_{44}=1-\frac{\partial {\Phi _4}}{\partial {X_4}}(T,X_0). \end{aligned}$$
(43)

Appendix 2: The Second-Order Partial Derivatives of \(\Phi _{i},i=3,4\)

From (27), we have

$$\begin{aligned} \frac{d}{\hbox {d}t}\frac{\partial {\Phi _i}(t,X_0)}{\partial {X_j}}= & {} \frac{\partial {F_i(\tilde{X}(t))}}{\partial {X_1}}\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_j}} +\frac{\partial {F_i(\tilde{X}(t))}}{\partial {X_2}}\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_j}}\\&+\frac{\partial {F_i(\tilde{X}(t))}}{\partial {X_3}}\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_j}} +\frac{\partial {F_i(\tilde{X}(t))}}{\partial {X_4}}\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_j}}, \end{aligned}$$

with \(i,j=1,2,3,4.\) Then

$$\begin{aligned} \frac{d}{\hbox {d}t}\frac{\partial ^2{\Phi _i}(t,X_0)}{\partial {X_j}\partial {X_k}}= & {} \frac{\partial ^2{F_i(\tilde{X}(t))}}{\partial {X_1}\partial {X_k}}\frac{\partial {\Phi _1}(t,X_0)}{\partial {X_j}} +\frac{\partial {F_i(\tilde{X}(t))}}{\partial {X_1}}\frac{\partial ^2{\Phi _1}(t,X_0)}{\partial {X_j}\partial {X_k}}\\&+\frac{\partial ^2{F_i(\tilde{X}(t))}}{\partial {X_2}\partial {X_k}}\frac{\partial {\Phi _2}(t,X_0)}{\partial {X_j}} +\frac{\partial {F_i(\tilde{X}(t))}}{\partial {X_2}}\frac{\partial ^2{\Phi _2}(t,X_0)}{\partial {X_j}\partial {X_k}}\\&+\frac{\partial ^2{F_i(\tilde{X}(t))}}{\partial {X_3}\partial {X_k}}\frac{\partial {\Phi _3}(t,X_0)}{\partial {X_j}} +\frac{\partial {F_i(\tilde{X}(t))}}{\partial {X_3}}\frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X_j}\partial {X_k}}\\&+\frac{\partial ^2{F_i(\tilde{X}(t))}}{\partial {X_4}\partial {X_k}}\frac{\partial {\Phi _4}(t,X_0)}{\partial {X_j}} +\frac{\partial {F_i(\tilde{X}(t))}}{\partial {X_4}}\frac{\partial ^2{\Phi _4}(t,X_0)}{\partial {X_j}\partial {X_k}},\\ \end{aligned}$$

with \(i,j,k=1,2,3,4.\) By simple calculation, it follows that

$$\begin{aligned} \frac{\partial {F_i(\tilde{X}(t))}}{\partial {X_j}}= & {} \frac{\partial {\Phi _i}(t,X_0)}{\partial {X_j}}=0,i=3,4,j=1,2,\\ \frac{\partial {F^2_i(\tilde{X}(t))}}{\partial {X^2_1}}= & {} \frac{\partial {F^2_i(\tilde{X}(t))}}{\partial {X_1}\partial {X_2}} =\frac{\partial {F^2_i(\tilde{X}(t))}}{\partial {X_j}\partial {X_k}}=0,i=3,4,j,k=1,2,\\ \frac{\partial {F_3(\tilde{X}(t))}}{\partial {X_4}}= & {} 0.\\ \end{aligned}$$

Thus

$$\begin{aligned} \frac{d}{\hbox {d}t}\frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X^2_1}}= & {} \frac{\partial {F_3(\tilde{X}(t))}}{\partial {X_3}}\frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X^2_1}},\nonumber \\ \frac{d}{\hbox {d}t}\frac{\partial ^2{\Phi _4}(t,X_0)}{\partial {X^2_1}}= & {} \frac{\partial {F_4(\tilde{X}(t))}}{\partial {X_3}}\frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X^2_1}} +\frac{\partial {F_4(\tilde{X}(t))}}{\partial {X_4}}\frac{\partial ^2{\Phi _4}(t,X_0)}{\partial {X^2_1}},\nonumber \\ \frac{d}{\hbox {d}t}\frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X^2_2}}= & {} \frac{\partial {F_3(\tilde{X}(t))}}{\partial {X_3}}\frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X^2_2}},\nonumber \\ \frac{d}{\hbox {d}t}\frac{\partial ^2{\Phi _4}(t,X_0)}{\partial {X^2_2}}= & {} \frac{\partial {F_4(\tilde{X}(t))}}{\partial {X_3}}\frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X^2_2}} +\frac{\partial {F_4(\tilde{X}(t))}}{\partial {X_4}}\frac{\partial ^2{\Phi _4}(t,X_0)}{\partial {X^2_2}}, \end{aligned}$$
(44)

with the initial conditions

$$\begin{aligned} \frac{\partial ^2{\Phi _3}(0,X_0)}{\partial {X^2_1}} =\frac{\partial ^2{\Phi _4}(0,X_0)}{\partial {X^2_1}} =\frac{\partial ^2{\Phi _3}(0,X_0)}{\partial {X^2_2}} =\frac{\partial ^2{\Phi _4}(0,X_0)}{\partial {X^2_2}}=0. \end{aligned}$$

Solving (44) deduces that

$$\begin{aligned} \frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X^2_1}} =\frac{\partial ^2{\Phi _4}(t,X_0)}{\partial {X^2_1}} =\frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X^2_2}} =\frac{\partial ^2{\Phi _4}(t,X_0)}{\partial {X^2_2}}=0. \end{aligned}$$
(45)

Similarly, we can obtain that

$$\begin{aligned} \frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X_1}\partial {X_2}} =\frac{\partial ^2{\Phi _3}(t,X_0)}{\partial {X_2}\partial {X_1}} =\frac{\partial ^2{\Phi _4}(t,X_0)}{\partial {X_1}\partial {X_2}} =\frac{\partial ^2{\Phi _4}(t,X_0)}{\partial {X_2}\partial {X_1}}=0. \end{aligned}$$
(46)

Appendix 3: The Partial Derivatives of \(\tilde{\alpha }_i, i=2,3,4\) at (0, 0)

First, we calculate the values of \(\partial {\tilde{\alpha }_i}(0,0)/\partial {\alpha _1}\) and \(\partial {\tilde{\alpha }_i}(0,0)/\partial {\bar{\theta }_1},i=2,3,4.\) It follows from (34) that

$$\begin{aligned} 0= & {} \left. \frac{\partial {N_j}}{\partial {\alpha _1}}\right| _{(0,0)} =\left. \frac{\partial {N_j}}{\partial {X_1}}\frac{\partial {X_1}}{\partial {\alpha _1}} +\frac{\partial {N_j}}{\partial {X_2}}\frac{\partial {X_2}}{\partial {\alpha _1}} +\frac{\partial {N_j}}{\partial {X_3}}\frac{\partial {X_3}}{\partial {\alpha _1}} +\frac{\partial {N_j}}{\partial {X_4}}\frac{\partial {X_4}}{\partial {\alpha _1}}\right| _{(0,0)}\nonumber \\= & {} \left. \frac{\partial {N_j}}{\partial {X_1}}\left( Y_{11}+\frac{\partial {\tilde{\alpha }_2}}{\partial {\alpha _1}}\right) +\frac{\partial {N_j}}{\partial {X_2}}\left( Y_{12}+\frac{\partial {\tilde{\alpha }_3}}{\partial {\alpha _1}}\right) +\frac{\partial {N_j}}{\partial {X_3}}\left( Y_{13}+\frac{\partial {\tilde{\alpha }_4}}{\partial {\alpha _1}}\right) +\frac{\partial {N_j}}{\partial {X_4}}Y_{14}\right| _{(0,0)}.\nonumber \\ \end{aligned}$$
(47)

Since \(Y_1\) is a basis of \(\ker (D_XN(0,O)),\) then

$$\begin{aligned} \left. \frac{\partial {N_i}}{\partial {X_1}}Y_{11}+\frac{\partial {N_i}}{\partial {X_1}}Y_{12} +\frac{\partial {N_i}}{\partial {X_1}}Y_{13}+\frac{\partial {N_i}}{\partial {X_1}}Y_{14}\right| _{(0,O)} =0,i=1,2,3,4. \end{aligned}$$
(48)

Hence from (47) and (48), we deduce that

$$\begin{aligned} \left. a^{'}_{11}\frac{\partial {\tilde{\alpha }_2}}{\partial {\alpha _1}} +a^{'}_{12}\frac{\partial {\tilde{\alpha }_3}}{\partial {\alpha _1}} +a^{'}_{13}\frac{\partial {\tilde{\alpha }_4}}{\partial {\alpha _1}}\right| _{(0,0)}= & {} 0,\nonumber \\ \left. a^{'}_{21}\frac{\partial {\tilde{\alpha }_2}}{\partial {\alpha _1}} +a^{'}_{22}\frac{\partial {\tilde{\alpha }_3}}{\partial {\alpha _1}} +a^{'}_{23}\frac{\partial {\tilde{\alpha }_4}}{\partial {\alpha _1}}\right| _{(0,0)}= & {} 0,\nonumber \\ \left. a^{'}_{31}\frac{\partial {\tilde{\alpha }_2}}{\partial {\alpha _1}} +a^{'}_{32}\frac{\partial {\tilde{\alpha }_3}}{\partial {\alpha _1}} +a^{'}_{33}\frac{\partial {\tilde{\alpha }_4}}{\partial {\alpha _1}}\right| _{(0,0)}= & {} 0. \end{aligned}$$
(49)

Solving (49) with respect to \(\partial {\tilde{\alpha }_i}/\partial {\alpha _1},i=2,3,4\) obtains

$$\begin{aligned} \frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\alpha _1}} =\frac{\partial {\tilde{\alpha }_3}(0,0)}{\partial {\alpha _1}} =\frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\alpha _1}}=0. \end{aligned}$$
(50)

Again considering (34), we have

$$\begin{aligned}&\left\{ \begin{array}{lll} N_i(\bar{\theta }_1,\alpha _1)=X_{0i}+Y_{1i}\alpha _1 +\tilde{\alpha }_{i+1}(\bar{\theta }_1,\alpha _1)-(\Phi _i(\theta _0+\bar{\theta }_1,X_0+\bar{X}(\bar{\theta }_1,\alpha _1))+\theta _0+\bar{\theta }_1),\\ N_j(\bar{\theta }_1,\alpha _1)=X_{0j}+Y_{1j}\alpha _1 +\tilde{\alpha }_{j+1}(\bar{\theta }_1,\alpha _1)-(\Phi _j(\theta _0+\bar{\theta }_1,X_0+\bar{X}(\bar{\theta }_1,\alpha _1))+\theta _2),\\ N_1(\bar{\theta }_1,\alpha _1)=N_2(\bar{\theta }_1,\alpha _1)=N_3(\bar{\theta }_1,\alpha _1)=0, \end{array} \right. \nonumber \\ \end{aligned}$$
(51)

with \(i=1,3,j=2,4,\) \(\tilde{\alpha }_{5}=0,\) \(X_0=(X_{01},X_{02},X_{03},X_{04})\) and \(\bar{X}=(\bar{X}_1,\bar{X}_2,\bar{X}_3,\bar{X}_4).\) Hence based on (43) and (51), we can deduce that

$$\begin{aligned} 0= & {} \frac{\partial {N_1}(0,0)}{\partial {\bar{\theta }_1}} =\frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}} -\left( 1+\sum \limits _{i=1}^{3}\left( \frac{\partial {\Phi _1(\theta _0,X_0)}}{\partial {X_i}}\frac{\partial {X_i}(0,0)}{\partial {\bar{\theta }_1}}\right) \right) \nonumber \\= & {} \frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}} +(a^{'}_{11}-1)\frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}} +a^{'}_{12}\frac{\partial {\tilde{\alpha }_3}(0,0)}{\partial {\bar{\theta }_1}} +a^{'}_{13}\frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }_1}}-1\nonumber \\= & {} a^{'}_{11}\frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}} +a^{'}_{12}\frac{\partial {\tilde{\alpha }_3}(0,0)}{\partial {\bar{\theta }_1}} +a^{'}_{13}\frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }_1}}-1. \end{aligned}$$
(52)

Similarly, from (43) and (51), we can obtain that

$$\begin{aligned} \frac{\partial {N_2}(0,0)}{\partial {\bar{\theta }_1}}= & {} a^{'}_{21}\frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}} +a^{'}_{22}\frac{\partial {\tilde{\alpha }_3}(0,0)}{\partial {\bar{\theta }_1}} +a^{'}_{23}\frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }_1}}=0,\nonumber \\ \frac{\partial {N_3}(0,0)}{\partial {\bar{\theta }_1}}= & {} a^{'}_{31}\frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}} +a^{'}_{32}\frac{\partial {\tilde{\alpha }_3}(0,0)}{\partial {\bar{\theta }_1}} +a^{'}_{33}\frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }_1}}\nonumber \\= & {} a^{'}_{33}\frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }_1}}=0. \end{aligned}$$
(53)

Solving (52) and (53) with respect to \(\partial {\tilde{\alpha }_i}(0,0)/\partial {\bar{\theta }_1},i=2,3,4\) yields that

$$\begin{aligned} \frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}}= & {} \frac{a^{'}_{22}}{a^{'}_{11}a^{'}_{22}-a^{'}_{12}a^{'}_{21}},\nonumber \\ \frac{\partial {\tilde{\alpha }_3}(0,0)}{\partial {\bar{\theta }_1}}= & {} -\frac{a^{'}_{21}}{a^{'}_{11}a^{'}_{22}-a^{'}_{12}a^{'}_{21}},\nonumber \\ \frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }_1}}= & {} 0. \end{aligned}$$
(54)

Based on the first equation of (51), we have that

$$\begin{aligned} 0= & {} \frac{\partial ^2{N_3(0,0)}}{\partial {\bar{\theta }_1}^2} =\frac{\partial }{{\partial {\bar{\theta }_1}}}\frac{\partial {N_3(0,0)}}{\partial {\bar{\theta }_1}}\nonumber \\= & {} \frac{\partial ^2{\tilde{\alpha }_4(0,0)}}{\partial {\bar{\theta }^2_1}} -\frac{\partial }{\partial {\bar{\theta }_1}}\sum \limits _{i=1}^{3}\left( \frac{\partial {\Phi _3(\theta _0,X_0)}}{\partial {X_i}}\frac{\partial {X_i}(0,0)}{\partial {\bar{\theta }_1}}\right) \nonumber \\= & {} \frac{\partial ^2{\tilde{\alpha }_4(0,0)}}{\partial {\bar{\theta }^2_1}} -\left[ \frac{\partial {\Phi _3(\theta _0,X_0)}}{\partial {X_1}}\frac{\partial ^2{\tilde{\alpha }_2(0,0)}}{\partial {\bar{\theta }^2_1}}\right. \nonumber \\&+\frac{\partial {\Phi _3(\theta _0,X_0)}}{\partial {X_2}}\frac{\partial ^2{\tilde{\alpha }_3(0,0)}}{\partial {\bar{\theta }^2_1}} +\frac{\partial {\Phi _3(\theta _0,X_0)}}{\partial {X_3}}\frac{\partial ^2{\tilde{\alpha }_4(0,0)}}{\partial {\bar{\theta }^2_1}}\nonumber \\&+\frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}} \left( \frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X^2_1}}\frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}} +\frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X_1}\partial {X_2}}\frac{\partial {\tilde{\alpha }_3}(0,0)}{\partial {\bar{\theta }_1}} +\frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X_1}\partial {X_3}}\frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }_1}}\right) \nonumber \\&+\frac{\partial {\tilde{\alpha }_3}(0,0)}{\partial {\bar{\theta }_1}} \left( \frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X_2}\partial {X_1}}\frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}} +\frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X^2_2}}\frac{\partial {\tilde{\alpha }_3}(0,0)}{\partial {\bar{\theta }_1}} +\frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X_2}\partial {X_3}}\frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }_1}}\right) \nonumber \\&+\left. \frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }_1}} \left( \frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X_3}\partial {X_1}}\frac{\partial {\tilde{\alpha }_2}(0,0)}{\partial {\bar{\theta }_1}} +\frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X_3}\partial {X_2}}\frac{\partial {\tilde{\alpha }_3}(0,0)}{\partial {\bar{\theta }_1}} +\frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X^2_3}}\frac{\partial {\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }_1}} \right) \right] .\nonumber \\ \end{aligned}$$
(55)

Substituting (41), (42), (45), (46) and (54) into (55) yields that

$$\begin{aligned} \frac{\partial ^2{\tilde{\alpha }_4}(0,0)}{\partial {\bar{\theta }^2_1}}=0. \end{aligned}$$
(56)

Then, we calculate the value of \(\partial ^2{\tilde{\alpha }_4(0,0)}/\partial {\bar{\theta }_1}\partial {\alpha _1}.\) From the first equation of (51) and combination with (31), (41), (42), (45), (46), (50) and (54), we have

$$\begin{aligned} 0= & {} \frac{\partial ^2{N_3\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}} =\frac{\partial }{{\partial {\alpha _1}}}\frac{\partial {N_3\left( 0,0\right) }}{\partial {\bar{\theta }_1}}\\= & {} \frac{\partial ^2{\tilde{\alpha }_4\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}} -\frac{\partial }{\partial {\alpha _1}}\sum \limits _{i=1}^{3}\left( \frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_i}}\frac{\partial {X_i}\left( 0,0\right) }{\partial {\bar{\theta }_1}}\right) \\= & {} \frac{\partial ^2{\tilde{\alpha }_4\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}} - \left[ \frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_1}}\frac{\partial ^2{\tilde{\alpha }_2\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}} +\frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_2}}\frac{\partial ^2{\tilde{\alpha }_3\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}} +\frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_3}}\frac{\partial ^2{\tilde{\alpha }_4\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}}\right. \\&+\left. \frac{\partial {\tilde{\alpha }_2\left( 0,0\right) }}{\partial {\bar{\theta }_1}}\frac{\partial }{\partial {\alpha _1}}\left( \frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_1}}\right) +\frac{\partial {\tilde{\alpha }_3\left( 0,0\right) }}{\partial {\bar{\theta }_1}}\frac{\partial }{\partial {\alpha _1}}\left( \frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_2}}\right) \right. \\&\left. +\frac{\partial {\tilde{\alpha }_4\left( 0,0\right) }}{\partial {\bar{\theta }_1}}\frac{\partial }{\partial {\alpha _1}}\left( \frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_3}}\right) \right] \\= & {} \frac{\partial ^2{\tilde{\alpha }_4\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}} -\left[ \frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_3}}\frac{\partial ^2{\tilde{\alpha }_4\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}} +\frac{\partial {\tilde{\alpha }_2\left( 0,0\right) }}{\partial {\bar{\theta }_1}}\frac{\partial }{\partial {\alpha _1}}\left( \frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_1}}\right) \right. \\&\left. +\frac{\partial {\tilde{\alpha }_3\left( 0,0\right) }}{\partial {\bar{\theta }_1}}\frac{\partial }{\partial {\alpha _1}}\left( \frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_2}}\right) \right] \\= & {} \frac{\partial ^2{\tilde{\alpha }_4\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}} -\left[ \frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_3}}\frac{\partial ^2{\tilde{\alpha }_4\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}}\right. \\&+\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\bar{\theta }_1}} \left( \frac{\partial ^2{\Phi _3\left( \theta _0,X_0\right) }}{\partial {X^2_1}}\left( Y_{11}+\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_1}\partial {X_2}}\left( Y_{12}+\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha _1}}\right) \right. \\&+\left. \frac{\partial ^2{\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_1}\partial {X_3}}\left( Y_{13}+\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_1}\partial {X_4}}Y_{14}\right) \\&+\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\bar{\theta }_1}} \left( \frac{\partial ^2{\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_2}\partial {X_1}}\left( Y_{11}+\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{\Phi _3\left( \theta _0,X_0\right) }}{\partial {X^2_2}}\left( Y_{12}+\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha _1}}\right) \right. \\&+\left. \left. \frac{\partial ^2{\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_2}\partial {X_3}}\left( Y_{13}+\frac{\partial {\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_2}\partial {X_4}}Y_{14}\right) \right] \\= & {} \frac{\partial ^2{\tilde{\alpha }_4\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}} -\left[ \frac{\partial {\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_3}}\frac{\partial ^2{\tilde{\alpha }_4\left( 0,0\right) }}{\partial {\bar{\theta }_1}\partial {\alpha _1}} +\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\bar{\theta }_1}} \frac{\partial ^2{\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_1}\partial {X_4}}\right. \\&\left. +\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\bar{\theta }_1}} \frac{\partial ^2{\Phi _3\left( \theta _0,X_0\right) }}{\partial {X_2}\partial {X_4}}\right] .\\ \end{aligned}$$

Thus we have

$$\begin{aligned} \frac{\partial ^2{\tilde{\alpha }_4(0,0)}}{\partial {\bar{\theta }_1}\partial {\alpha _1}} =\frac{1}{a^{'}_{33}} \left( \frac{a^{'}_{22}}{a^{'}_{11}a^{'}_{22}-a^{'}_{12}a^{'}_{21}} \frac{\partial ^2{\Phi _3(X_0)}}{\partial {X_1}\partial {X_4}} -\frac{a^{'}_{21}}{a^{'}_{11}a^{'}_{22}-a^{'}_{12}a^{'}_{21}} \frac{\partial ^2{\Phi _3(X_0)}}{\partial {X_2}\partial {X_4}}\right) .\nonumber \\ \end{aligned}$$
(57)

Next, we calculate the value of \(\partial ^2{\tilde{\alpha }_i(0,0)}/\partial {\alpha ^2_1},i=2,3,4.\) From (51) as \(i=1\), we have

$$\begin{aligned} 0= & {} \frac{\partial ^2{N_1\left( 0,0\right) }}{\partial {\alpha ^2_1}} =\frac{\partial }{\partial {\alpha _1}}\frac{\partial {N_1\left( 0,0\right) }}{\partial {\alpha _1}} \nonumber \\= & {} \frac{\partial }{\partial {\alpha _1}}\left( \frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_1}}\left( Y_{11}+\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_2}}\left( Y_{12}+\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha _1}}\right) \right. \nonumber \\&+\left. \frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_3}}\left( Y_{13}+\frac{\partial {\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_4}}Y_{14}\right) \nonumber \\= & {} \frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_1}}\frac{\partial ^2{\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha ^2_1}} +\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_2}}\frac{\partial ^2{\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha ^2_1}}\\&+\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_3}}\frac{\partial ^2{\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha ^2_1}} \nonumber \\&+ \left( Y_{11}+\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha _1}}\right) \frac{\partial }{\partial {\alpha _1}}\left( \frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_1}}\right) \\&+\left( Y_{12}+\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha _1}}\right) \frac{\partial }{\partial {\alpha _1}}\left( \frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_2}}\right) \nonumber \\&+\left( Y_{13}+\frac{\partial {\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha _1}}\right) \frac{\partial }{\partial {\alpha _1}}\left( \frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_3}}\right) +Y_{14}\frac{\partial }{\partial {\alpha _1}}\left( \frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_2}}\right) \nonumber \\= & {} \frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_1}}\frac{\partial ^2{\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha ^2_1}} +\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_2}}\frac{\partial ^2{\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha ^2_1}}\\&+\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_3}}\frac{\partial ^2{\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha ^2_1}} \nonumber \\&+\frac{\partial }{\partial {\alpha _1}}\left( Y_{11}\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_1}}+Y_{12}\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_2}}\right. \\&\left. +Y_{13}\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_3}} +Y_{14}\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_4}}\right) \nonumber \\= & {} \frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_1}}\frac{\partial ^2{\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha ^2_1}} +\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_2}}\frac{\partial ^2{\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha ^2_1}}\\&+\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_3}}\frac{\partial ^2{\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha ^2_1}} \nonumber \\&+Y_{11}\left[ \frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X^2_1}}\left( Y_{11}+\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha _1}}\right) \right. \\&+\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_1}\partial {X_2}}\left( Y_{12}+\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha _1}}\right) \nonumber \\&+\left. \frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_1}\partial {X_3}}\left( Y_{13}+\frac{\partial {\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_1}\partial {X_4}}Y_{14}\right] \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+Y_{12}\left[ \frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_2}\partial {X_1}}\left( Y_{11}+\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X^2_2}}\left( Y_{12}+\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha _1}}\right) \nonumber \right. \\&\left. +\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_2}\partial {X_3}}\left( Y_{13}+\frac{\partial {\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_2}\partial {X_4}}Y_{14}\right] \nonumber \\&+Y_{13}\left[ \frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_3}\partial {X_1}}\left( Y_{11}+\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_3}\partial {X_2}}\left( Y_{12}+\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha _1}}\right) \right. \nonumber \\&\left. +\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X^2_3}}\left( Y_{13}+\frac{\partial {\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_3}\partial {X_4}}Y_{14}\right] \nonumber \\&+Y_{14}\left[ \frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_4}\partial {X_1}}\left( Y_{11}+\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_4}\partial {X_2}}\left( Y_{12}+\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha _1}}\right) \right. \nonumber \\&\left. +\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_4}\partial {X_3}}\left( Y_{13}+\frac{\partial {\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha _1}}\right) +\frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X^2_4}}Y_{14}\right] \nonumber \\= & {} \frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_1}}\frac{\partial ^2{\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\alpha ^2_1}} +\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_2}}\frac{\partial ^2{\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\alpha ^2_1}} +\frac{\partial {N_1\left( \theta _0,X_0\right) }}{\partial {X_3}}\frac{\partial ^2{\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\alpha ^2_1}} \nonumber \\&+\sum \limits _{i=1}^{4}\sum \limits _{j=1}^{4} \frac{\partial ^2{N_1\left( \theta _0,X_0\right) }}{\partial {X_i}\partial {X_j}}Y_{1i}Y_{1j}. \end{aligned}$$
(58)

Submitting (30) into (58) gives

$$\begin{aligned}&a^{'}_{11}\frac{\partial ^2{\tilde{\alpha }_2}(0,0)}{\partial {\alpha ^2_1}} +a^{'}_{12}\frac{\partial ^2{\tilde{\alpha }_3}(0,0)}{\partial {\alpha ^2_1}} +a^{'}_{13}\frac{\partial ^2{\tilde{\alpha }_4}(0,0)}{\partial {\alpha ^2_1}}\nonumber \\&\quad =-\sum \limits _{i=1}^{4}\sum \limits _{j=1}^{4} \frac{\partial ^2{N_1(\theta _0,X_0)}}{\partial {X_i}\partial {X_j}}Y_{1i}Y_{1j}\nonumber \\&\quad =\sum \limits _{i=1}^{4}\sum \limits _{j=1}^{4} \frac{\partial ^2{\Phi _1(\theta _0,X_0)}}{\partial {X_i}\partial {X_j}}Y_{1i}Y_{1j}. \end{aligned}$$
(59)

Similarly, we can obtain from (51) as \(i=2,3\) that

$$\begin{aligned} a^{'}_{21}\frac{\partial ^2{\tilde{\alpha }_2}(0,0)}{\partial {\alpha ^2_1}} +a^{'}_{22}\frac{\partial ^2{\tilde{\alpha }_3}(0,0)}{\partial {\alpha ^2_1}} +a^{'}_{23}\frac{\partial ^2{\tilde{\alpha }_4}(0,0)}{\partial {\alpha ^2_1}}= & {} \sum \limits _{i=1}^{4}\sum \limits _{j=1}^{4} \frac{\partial ^2{\Phi _2(\theta _0,X_0)}}{\partial {X_i}\partial {X_j}}Y_{1i}Y_{1j}, \nonumber \\ a^{'}_{33}\frac{\partial ^2{\tilde{\alpha }_4}(0,0)}{\partial {\alpha ^2_1}}= & {} \sum \limits _{i=1}^{4}\sum \limits _{j=1}^{4} \frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X_i}\partial {X_j}}Y_{1i}Y_{1j}. \end{aligned}$$
(60)

Hence, we can solve the roots of equations (59) and (60) with respect to \(\partial ^2{\tilde{\alpha }_i(0,0)}/\partial {\alpha ^2_1},i=2,3,4,\) and submit them with \(i=4\) into (68) in Appendix 5.

Appendix 4: The First-Order Partial Derivatives of \(N_4(\bar{\theta }_1,\beta _1)\)

Similar to (47), (52) and (53), we can calculate from (26) that

$$\begin{aligned} \left. \frac{\partial {N_4}}{\partial {\alpha _1}}\right| _{\left( 0,0\right) }= & {} \left. \frac{\partial {N_1}}{\partial {X_1}}\left( Y_{11}+\frac{\partial {\tilde{\alpha }_2}}{\partial {\alpha _1}}\right) +\frac{\partial {N_4}}{\partial {X_2}}\left( Y_{12}+\frac{\partial {\tilde{\alpha }_3}}{\partial {\alpha _1}}\right) +\frac{\partial {N_4}}{\partial {X_3}}\left( Y_{13}+\frac{\partial {\tilde{\alpha }_4}}{\partial {\alpha _1}}\right) +\frac{\partial {N_4}}{\partial {X_4}}Y_{14}\right| _{\left( 0,0\right) },\nonumber \\ \left. \frac{\partial {N_4}}{\partial {\bar{\theta }_1}}\right| _{\left( 0,0\right) }= & {} \left. -\frac{\partial {\Phi _4\left( X_0\right) }}{\partial {X_1}}\frac{\partial {\tilde{\alpha }_2}\left( 0,0\right) }{\partial {\bar{\theta }_1}} -\frac{\partial {\Phi _4\left( X_0\right) }}{\partial {X_2}}\frac{\partial {\tilde{\alpha }_3}\left( 0,0\right) }{\partial {\bar{\theta }_1}} -\frac{\partial {\Phi _4\left( X_0\right) }}{\partial {X_3}}\frac{\partial {\tilde{\alpha }_4}\left( 0,0\right) }{\partial {\bar{\theta }_1}} \right| _{\left( 0,0\right) }. \end{aligned}$$
(61)

Substituting (48), (50) and (54) into (61) obtains

$$\begin{aligned} \frac{\partial {N_4}(0,0)}{\partial {\alpha _1}}=\frac{\partial {N_4}(0,0)}{\partial {\bar{\theta }_1}}=0. \end{aligned}$$
(62)

Appendix 5: The Second-Order Partial Derivatives of \(N_4(\bar{\theta }_1,\alpha _1)\)

(i) Calculation the value of A.

According to the second equation of (51) as \(j=4,\) we can easily get that

(63)

Substituting (41), (42), (45), (46) (50), (54) and (56) into (63) obtains

$$\begin{aligned} A=\frac{\partial ^2{N_4(0,0)}}{\partial {\bar{\theta }_1}^2}=0. \end{aligned}$$
(64)

(ii) Calculation the value of B.

Similarly, based on the second equation of (51), it follows that

(65)

Then substituting (54) and (57) into the above equation yields that

$$\begin{aligned} B= & {} \frac{\partial ^2{N_4(0,0)}}{\partial {\bar{\theta }_1}\partial {\alpha _1}}\nonumber \\= & {} -\left[ \frac{a^{'}_{22}}{a^{'}_{11}a^{'}_{22}-a^{'}_{12}a^{'}_{21}} \left( \frac{\partial ^2{\Phi _4(X_0)}}{\partial {X_1}\partial {X_4}} -\frac{a^{'}_{43}}{a^{'}_{33}}\frac{\partial ^2{\Phi _3(X_0)}}{\partial {X_1}\partial {X_4}}\right) \right. \nonumber \\&\quad \left. -\frac{a^{'}_{21}}{a^{'}_{11}a^{'}_{22}-a^{'}_{12}a^{'}_{21}} \left( \frac{\partial ^2{\Phi _4(X_0)}}{\partial {X_2}\partial {X_4}} -\frac{a^{'}_{43}}{a^{'}_{33}}\frac{\partial ^2{\Phi _3(X_0)}}{\partial {X_2}\partial {X_4}}\right) \right] . \end{aligned}$$
(66)

(iii) Calculation of the value of C.

Similarly to (58), we have that

$$\begin{aligned} \frac{\partial ^2{N_4(0,0)}}{\partial {\alpha ^2_1}}= & {} \frac{\partial {N_4(\theta _0,X_0)}}{\partial {X_3}}\frac{\partial ^2{\tilde{\alpha }_4}(0,0)}{\partial {\alpha ^2_1}} +\sum \limits _{i=1}^{4}\sum \limits _{j=1}^{4} \frac{\partial ^2{N_4(\theta _0,X_0)}}{\partial {X_i}\partial {X_j}}Y_{1i}Y_{1j}\nonumber \\= & {} a^{'}_{43}\frac{\partial ^2{\tilde{\alpha }_4(0,0)}}{\partial {\alpha ^2_1}} -\sum \limits _{i=1}^{4}\sum \limits _{j=1}^{4} \frac{\partial ^2{\Phi _4(\theta _0,X_0)}}{\partial {X_i}\partial {X_j}}Y_{1i}Y_{1j}. \end{aligned}$$
(67)

Submitting the roots of equations (59) and (60) with \(i=4\) into (68), we can obtain that

$$\begin{aligned} C=\frac{\partial ^2{N_4(0,0)}}{\partial {\alpha ^2_1}} =\sum \limits _{i=1}^{4}\sum \limits _{j=1}^{4}\left( \frac{a^{'}_{43}}{a^{'}_{33}}\frac{\partial ^2{\Phi _3(\theta _0,X_0)}}{\partial {X_i}\partial {X_j}} -\frac{\partial ^2{\Phi _4(\theta _0,X_0)}}{\partial {X_i}\partial {X_j}}\right) Y_{1i}Y_{1j}. \end{aligned}$$
(68)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Tang, S., Cheke, R.A. et al. Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation. Bull Math Biol 78, 1968–2010 (2016). https://doi.org/10.1007/s11538-016-0208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0208-7

Keywords

Navigation