Skip to main content
Log in

The Role of Mathematical Models in Understanding Pattern Formation in Developmental Biology

  • Special Issue Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics—whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: “It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations.” This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, “The laws of Nature are written in the language of mathematics\(\ldots \) the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word.” Mathematics has moved beyond the geometry-based model of Galileo’s time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837–838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades—that of how organisms can scale in size. Mathematical analysis alone cannot “solve” these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aegerter-Wilmsen T, Aegerter CM, Hafen E, Basler K (2007) Model for the regulation of size in the wing imaginal disc of Drosophila. Mech Dev 124(4):318–326

    Article  Google Scholar 

  • Aegerter-Wilmsen T, Smith AC, Christen AJ, Aegerter CM, Hafen E, Basler K (2010) Exploring the effects of mechanical feedback on epithelial topology. Development 137(3):499–506

    Article  Google Scholar 

  • Albert Réka, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223:1–18

    Article  MathSciNet  Google Scholar 

  • Bazil JN, Buzzard GT, Rundell AE (2012) A global parallel model based design of experiments method to minimize model output uncertainty. Bull Math Biol 74(3):688–716

    Article  MATH  MathSciNet  Google Scholar 

  • Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J, Lin X (2002) pygopus Encodes a nuclear protein essential for wingless/Wnt signaling. Development 129(17):4089–4101

    Google Scholar 

  • Ben-Zvi D, Shilo BZ, Fainsod A, Barkai N (2008) Scaling of the BMP activation gradient in Xenopus embryos. Nature 453(7199):1205–1211

    Article  Google Scholar 

  • Ben-Zvi D, Pyrowolakis G, Barkai N, Shilo BZ (2011) Expansion–repression mechanism for scaling the Dpp activation gradient in Drosophila wing imaginal discs. Curr Biol 21:1391–1396

    Article  Google Scholar 

  • Bergmann S, Sandler O, Sberro H, Shnider S, Schejter E, BZ, Shilo BZ, Barkai N (2007) Pre-steady-state decoding of the Bicoid morphogen gradient. PLoS Biol 5(2):e46

  • Blair SS (2007) Wing vein patterning in Drosophila and the analysis of intercellular signaling. Ann Rev Cell Dev Biol 23:293–319

    Article  Google Scholar 

  • Bollenbach T, Kruse K, Pantazis P, Gonzalez-Gaitan M, Julicher F (2005) Robust formation of morphogen gradients. Phys Rev Lett 94(1):018103

    Article  Google Scholar 

  • Child CM (1941) Patterns and problems of development. University of Chicago press, Chicago

    Book  Google Scholar 

  • Conley CA, Silburn R, Singer MA, Ralston A, Rohwer-Nutter D, Olson DJ, Gelbart W, Blair SS (2000) Crossveinless 2 contains cysteine-rich domains and is required for high levels of BMP-like activity during the formation of the cross veins in Drosophila. Development 127(18):3947–3959

    Google Scholar 

  • de Celis JF, Diaz-Benjumea FJ (2003) Developmental basis for vein pattern variations in insect wings. Int J Dev Biol 47(7–8):653–663

    Google Scholar 

  • Dinh V, Rundell AE, Buzzard GT (2014) Experimental design for dynamics identification of cellular processes. Bull Math Biol 76(3):597–626

    Article  MATH  MathSciNet  Google Scholar 

  • Donahue MM, Buzzard GT, Rundell AE (2010) Experiment design through dynamical characterisation of non-linear systems biology models utilising sparse grids. IET Syst Biol 4(4):249–262

    Article  Google Scholar 

  • Driever W, Nüsslein-Volhard C (1988) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54(1):95–104

  • Eldar A, Dorfman R, Weiss D, Ashe H, Shilo BZ, Barkai N (2002) Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419(6904):304–308

    Article  Google Scholar 

  • Entchev EV, Gonzalez-Gaitan MA (2002) Morphogen gradient formation and vesicular trafficking. Traffic 3(2):98–109

    Article  Google Scholar 

  • Entchev EV, Schwabedissen A, Gonzalez-Gaitan M (2000) Gradient formation of the TGF-beta homolog Dpp. Cell 103(6):981–91

    Article  Google Scholar 

  • Gavin-Smyth J, Wang YC, Butler I, Ferguson EL (2013) A genetic network conferring canalization to a bistable patterning system in Drosophila. Curr Biol 23(22):2296–2302

    Article  Google Scholar 

  • Gibson MC, Lehman DA, Schubiger G (2002) Lumenal transmission of decapentaplegic in Drosophila imaginal discs. Dev Cell 3(3):451–60

    Article  Google Scholar 

  • Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW (2007) Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130(1):141–152

    Article  Google Scholar 

  • Hamaratoglu F, de Lachapelle AM, Pyrowolakis G, Bergmann S, Affolter M (2011) Dpp signaling activity requires pentagone to scale with tissue size in the growing Drosophila wing imaginal disc. PLoS Biol 9(10):e1001182

    Article  Google Scholar 

  • Harris RE, Pargett M, Sutcliffe C, Umulis D, Ashe HL (2011) Brat promotes stem cell differentiation via control of a bistable switch that restricts BMP signaling. Dev Cell 20(1):72–83

    Article  Google Scholar 

  • Held LI (2002) Imaginal discs: the genetic and cellular logic of pattern formation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Irish VF, Gelbart WM (1987) The decapentaplegic gene is required for dorsal-ventral patterning of the Drosophila embryo. Genes Dev 1(8):868–879

    Article  Google Scholar 

  • Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Myasnikova E, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430(6997):368–371

    Article  Google Scholar 

  • Janssens H, Hou S, Jaeger J, Kim A-R, Myasnikova E, Sharp D, Reinitz J (2006) Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nat Genet 38(10):1159–1165 (Epub 2006 Sep 17)

    Article  Google Scholar 

  • Kang HW, Zheng L, Othmer HG (2012) The effect of the signalling scheme on the robustness of pattern formation in development. Interface Focus 2(4):465–486

    Article  Google Scholar 

  • Karim MS, Buzzard GT, Umulis DM (2012) Secreted, receptor-associated bone morphogenetic protein regulators reduce stochastic noise intrinsic to many extracellular morphogen distributions. J R Soc Interface 9(70):1073–1083

    Article  Google Scholar 

  • Kerszberg M, Wolpert L (1998) Mechanisms for positional signalling by morphogen transport: a theoretical study. J Theor Biol 191:103–114

    Article  Google Scholar 

  • Kicheva Anna, Pantazis Periklis, Bollenbach Tobias, Kalaidzidis Yannis, Bittig Thomas, Julicher Frank, Gonzalez-Gaitan Marcos (2007) Kinetics of morphogen gradient formation. Science 315(5811):521–525

    Article  Google Scholar 

  • Kreutz C, Timmer J (2009) Systems biology: experimental design. FEBS J 276(4):923–942

    Article  Google Scholar 

  • Lander AD, Nie Q, Wan FY (2002) Do morphogen gradients arise by diffusion? Dev Cell 2(6):785–96

    Article  Google Scholar 

  • Lander AD, Lo W-C, Nie Q, Wan FYM (2009) The measure of success: constraints, objectives, and tradeoffs in morphogen-mediated patterning. Cold Spring Harbor Perspect Biol 1(1):a002022

    MathSciNet  Google Scholar 

  • Lou Y, Nie Q, Wan FYM (2005) Effects of sog on Dpp-receptor binding. SIAM J Appl Math 65(5):1748–1771

    Article  MATH  MathSciNet  Google Scholar 

  • Maini PK (2004) The impact of Turing’s work on pattern formation in biology. Math Today 40(4):140–141

    Google Scholar 

  • Mizutani N, Watanabe T, Yoshida Y, Okabe N (1993) Extraction of contour lines by identification of neighbor relationships on a Voronoi line graph. Syst Comput Jpn 24(1):57

  • Murray JD (1993) Mathematical biology, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Nahmad M, Stathopoulos A (2009) Dynamic interpretation of hedgehog signaling in the Drosophila wing disc. PLoS Biol 7(9):e1000202

    Article  Google Scholar 

  • Nellen D, Affolter M, Basler K (1994) Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell 78(2):225–237

    Article  Google Scholar 

  • O’Connor MB, Umulis D, Othmer HG, Blair SS (2006) Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 133(2):183–193

    Article  Google Scholar 

  • Othmer HG, Pate EF (1980) Scale invariance in reaction–diffusion models of spatial pattern formation. Proc Natl Acad Sci 77:4180–4184

    Article  Google Scholar 

  • Othmer HG, Painter K, Umulis DM, Xue C (2009) Mathematical models of pattern formation in biology. MMNP Morphog 4:3–79.

  • Pantalacci S, Sémon M, Martin A, Chevret P, Laudet V (2009) Heterochronic shifts explain variations in a sequentially developing repeated pattern: palatal ridges of muroid rodents. Evol Dev 11(4):422–433

    Article  Google Scholar 

  • Pargett M, Rundell AE, Buzzard GT, Umulis DM (2014) Model-based analysis for qualitative data: an application in Drosophila germline stem cell regulation. PLoS Comput Biol 10(3):e1003498

    Article  Google Scholar 

  • Perkins TJ, Jaeger J, Reinitz J, Glass L (2006) Reverse engineering the gap gene network of Drosophila melanogaster. PLoS Comput Biol 2(5):0417–0428

    Article  Google Scholar 

  • Serpe M, Umulis D, Ralston A, Chen J, Olson DJ, Avanesov A, Othmer H, O’Connor MB, Blair SS (2008) The BMP-binding protein Crossveinless 2 is a short-range, concentration-dependent, biphasic modulator of BMP signaling in Drosophila. Dev Cell 14(June):940–953

    Article  Google Scholar 

  • Shimmi O, Umulis D, Othmer HG, O’Connor MB (2005) Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120(6):873–886

    Article  Google Scholar 

  • Shingleton AW, Frankino WA, Flatt T, Nijhout HF, Emlen DJ (2007) Size and shape: the developmental regulation of static allometry in insects. Bioessays 29(6):536–548

    Article  Google Scholar 

  • Teleman AU, Cohen SM (2000) Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103(6):971–980

    Article  Google Scholar 

  • Thompson D’AW (1942) On growth and form, vol 2, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tucker JA, Mintzer KA, Mullins MC (2008) The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 14(1):108–119

    Article  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72

    Article  Google Scholar 

  • Umulis D, O’Connor MB, Othmer HG (2008) Robustness of embryonic spatial patterning in Drosophila melanogaster. Curr Top Dev Biol 81:65–111

    Article  Google Scholar 

  • Umulis D, O’Connor MB, Blair SS (2009) The extracellular regulation of bone morphogenetic protein signaling. Development 136(22):3715–3728

  • Umulis DM (2009) Analysis of dynamic morphogen scale-invariance. J R Soc Interface 6:1179–1191

    Article  Google Scholar 

  • Umulis DM, Serpe M, O’Connor MB, Othmer HG (2006) Robust, bistable patterning of the dorsal surface of the Drosophila embryo. Proc Natl Acad Sci USA 103(31):11613–11618

    Article  Google Scholar 

  • Umulis DM, Shimmi O, O’Connor MB, Othmer HG (2010) Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. Dev Cell 18(2):260–274

    Article  Google Scholar 

  • Umulis DM, Othmer HG (2012) The importance of geometry in mathematical models of developing systems. Curr Opin Gen Dev 22(6):547–552

    Article  Google Scholar 

  • Umulis DM, Othmer HG (2013) Mechanisms of scaling in pattern formation. Development 140(24):4830–4843

    Article  Google Scholar 

  • Vincent JP, Dubois L (2002) Morphogen transport along epithelia, an integrated trafficking problem. Dev Cell 3(5):615–623

    Article  Google Scholar 

  • Vuilleumier R, Springhorn A, Patterson L, Koidl S, Hammerschmidt M, Affolter M, Pyrowolakis G (2010) Control of Dpp morphogen signalling by a secreted feedback regulator. Nat Cell Biol 12(6):611–617

    Article  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150(3811):563–565

    Article  Google Scholar 

  • Waddington CH (1952) Letter from Waddington to Turing. The Turing Digital Archive. AMT/D/5: 1TLS, September.

  • Wang L, Xin J, Nie Q (2010) A critical quantity for noise attenuation in feedback systems. PLoS Comput Biol 6(4):e1000764

    Article  MathSciNet  Google Scholar 

  • Wang YC, Ferguson EL (2005) Spatial bistability of Dpp-receptor interactions during Drosophila dorsal–ventral patterning. Nature 434(7030):229–234

    Article  Google Scholar 

  • Wartlick O, González-Gaitán M (2011) The missing link: implementation of morphogenetic growth control on the cellular and molecular level. Curr Opin Genet Dev 21(6):690–695

  • Wartlick O, Mumcu P, Kicheva A, Bittig T, Seum C, Jülicher F, González-Gaitán M (2011a) Dynamics of Dpp signaling and proliferation control. Science 331(6021):1154

  • Wartlick O, Mumcu P, Jülicher F, Gonzalez-Gaitan M (2011b) Understanding morphogenetic growth control—lessons from flies. Nat Rev Mol Cell Biol 12(9):594–604

  • Widmann TJ, Dahmann C (2009) Wingless signaling and the control of cell shape in Drosophila wing imaginal discs. Dev Biol 334(1):161–173

    Article  Google Scholar 

  • Wilson EO, Frenkel E (2013) Opinion: two views: how much math do scientists need? Notices Am Math Soc 60(7):837–838

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Article  Google Scholar 

Download references

Acknowledgments

Research supported in part by Grant # GM 29123 and HD 73156 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Othmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umulis, D.M., Othmer, H.G. The Role of Mathematical Models in Understanding Pattern Formation in Developmental Biology. Bull Math Biol 77, 817–845 (2015). https://doi.org/10.1007/s11538-014-0019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0019-7

Keywords

Navigation