Skip to main content
Log in

The Effects of Seasonal Forcing on Invertebrate-Disease Interactions with Immune Priming

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

There is increasing experimental evidence that exposure to low doses of infection may ‘prime’ the immune response of invertebrate hosts, giving them greater protection against future infection. This form of immune memory is not compatible with the ‘acquired immunity’ modelled by the classic Susceptible-Infected-Recovered (SIR) epidemiological model, but instead requires the development of an alternative Susceptible-Primed-Infected (SPI) framework. Some initial theoretical work has explored the epidemiological and evolutionary dynamics of the SPI model, but these have assumed hosts exist in a constant environment. In reality, natural invertebrate-disease systems will be subject to significant environmental variation. Here, I use bifurcation analysis using numerical continuation software, complemented with numerical simulations, to investigate the effects of seasonal forcing on the already complex epidemiological dynamics of the SPI model. I show that multi-year cycles, quasi-periodicity, chaos, and multiple stability may all result, and highlight the importance not just of the forcing amplitude, but also the ecological and epidemiological background, for complex dynamics to emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altizer, S., Dobson, A., Hosseini, P., Hudson, P. J., Pascual, M., & Rohani, P. (2006). Seasonality and the dynamics of infectious disease. Ecol. Lett., 9, 467.

    Article  Google Scholar 

  • Anderson, R. M., & May, R. M. (1979). Population biology of infectious diseases: part I. Nature, 280, 361–367.

    Article  Google Scholar 

  • Anderson, R. M., & May, R. M. (1980). Infectious diseases and population cycles of frest insects. Science, 210, 658–661.

    Article  Google Scholar 

  • Aron, J. L., & Schartz, I. B. (1984). Seasonality and period-doubling bifurcations in an epidemic model. J. Theor. Biol., 110, 665–679.

    Article  MathSciNet  Google Scholar 

  • Berryman, A. A. (1996). What causes population cycles of forest Lepidoptera. Trends Ecol. Evol., 11, 28–32.

    Article  Google Scholar 

  • Best, A., Tidbury, H., White, A., & Boots, M. (2013). The evolutionary dynamics of within-generation immune priming in invertebrate hosts. J. R. Soc. Interface, 10, 20120887.

    Article  Google Scholar 

  • Bolzoni, L., Dobson, A. P., Gatto, M., & De Leo, G. A. (2008). Allometric scaling and seasonality in the epidemics of wildlife diseases. Am. Nat., 172, 818–828.

    Article  Google Scholar 

  • Bonsall, M. B. (2004). The impact of diseases and pathogens on insect population dynamics. Physiol. Entomol., 29(3), 223–236.

    Article  Google Scholar 

  • Casagrandi, R., Bolzoni, L., Levin, S. A., & Andreasen, V. (2006). The SIRC model and influenza A. Math. Biosci., 200, 152–169.

    Article  MathSciNet  MATH  Google Scholar 

  • Childs, D. Z., & Boots, M. (2010). The interaction of seasonal forcing and immunity and the resonance dynamics of malaria. J. R. Soc. Interface, 7, 309–319.

    Article  Google Scholar 

  • Doedel, E. J. (2007). http://indy.cs.concordia.ca/auto.

  • Doedel, E. J., & Oldeman, B. E. (2009). AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Technical report, Concordia University, Montreal, Canada.

  • Earn, D., Rohani, P., Bolker, B., & Grenfell, B. T. (2000). A simple model for complex dynamical transitions in epidemics. Science, 287, 667–670.

    Article  Google Scholar 

  • Glendinning, P., & Perry, L. P. (1997). Melnikov analysis of chaos in a simple epidemiological model. J. Math. Biol., 35, 359–373.

    Article  MathSciNet  MATH  Google Scholar 

  • Greenman, J. V., Kamo, M., & Boots, M. (2004). External forcing of ecological and epidemiological systems: a resonance approach. Physica D, 190, 136–151.

    Article  MATH  Google Scholar 

  • Kermack, W. O., & McKendrick, A. G. (1927). Contributions to the mathematical theory of epidemics—1. Proc. R. Soc. Lond. B, Biol. Sci., 115A, 700–721.

    Article  MATH  Google Scholar 

  • Kuznetsov, Y., Muratori, S., & Rinaldi, S. (1992). Bifurcations and chaos in a periodic predator-prey model. Int. J. Bifurc. Chaos, 2, 117–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, Y., & Piccardi, C. (1994). Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol., 32, 109–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, Y. (1995). Elements of applied bifurcation theory. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Little, T., & Kraaijeveld, A. R. (2004). Evological and evolutionary implications of immunological priming in invertebrates. Trends Ecol. Evol., 19, 58–60.

    Article  Google Scholar 

  • Little, T., O’Connor, B., Colgrave, N., Watt, K., & Read, A. F. (2003). Maternal transfer of strain-specific immunity in an invertebrate. Curr. Biol., 13, 489–492.

    Article  Google Scholar 

  • Moret, Y., & Siva-Jothy, M. T. (2003). Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beatle Tenebrio molitor. Proc. R. Soc. Lond. B, Biol. Sci., 270, 2475–2480.

    Article  Google Scholar 

  • Myers, J. H. (1988). Can a general hypothesis explain population cycles in forest Lepidoptera? In M. Begon, A. H. Fitter, E. D. Ford & A. Macfayden (Eds.), Advances in ecological research (Vol. 18). San Diego: Academic Press.

    Google Scholar 

  • Rinaldi, S., Muratori, S., & Kuznetsov, Y. (1993). Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol., 55, 15–35.

    Article  MATH  Google Scholar 

  • Roth, O., Sadd, B. M., Schmid-Hempel, P., & Kurtz, J. (2009). Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum. Proc. R. Soc. Lond. B, Biol. Sci., 276, 145–151.

    Article  Google Scholar 

  • Sadd, B. M., & Schmid-Hempel, P. (2006). Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr. Biol., 16, 1206–1210.

    Article  Google Scholar 

  • Schmid-Hempel, P. (2005). Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol., 50, 529–551.

    Article  Google Scholar 

  • Schwartz, I. B. (1985). Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models. J. Math. Biol., 21, 347–361.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, H. L. (1983). Subharmonic bifurcation in an S-I-R epidemic model. J. Math. Biol., 17, 163–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Tate, A. T., & Rudolf, V. H. W. (2011). Impact of life stage specific immune priming on invertebrate disease dynamics. Oikos.

  • Taylor, R. A., Sherratt, J. A., & White, A. (2012, in press). Seasonal forcing and multi-year cycles in interacting populations: lessons from a predator-prey model. J. Math. Biol. doi:10.1007/s00285-012-0612-z.

    MATH  MathSciNet  Google Scholar 

  • Tidbury, H., Pedersen, A. B., & Boots, M. (2011). Within and transgenerational immune priming in an insect to a dna virus. Proc. R. Soc. Lond. B, Biol. Sci., 278, 871–876.

    Article  Google Scholar 

  • Tidbury, H., Best, A., & Boots, M. (2012). The epidemiological consequences of immune priming. Proc. R. Soc. Lond. B, Biol. Sci., 279, 4505–4512.

    Article  Google Scholar 

  • White, A., Bowers, R. G., & Begon, M. (1996). Host-pathogen cycles in self-regulated forest insect systems: resolving conflicting predictions. Am. Nat., 148, 220–225.

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank Rachel Taylor, Andy White, Hannah Tidbury, and Mike Boots for useful comments and discussions in the development of this manuscript, as well as two anonymous reviewers for their helpful suggestions and insights on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Best.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Best, A. The Effects of Seasonal Forcing on Invertebrate-Disease Interactions with Immune Priming. Bull Math Biol 75, 2241–2256 (2013). https://doi.org/10.1007/s11538-013-9889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9889-3

Keywords

Navigation