Skip to main content

Advertisement

Log in

Implicit Estimation of Ecological Model Parameters

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We introduce an implicit method for state and parameter estimation and apply it to a stochastic ecological model. The method uses an ensemble of particles to approximate the distribution of model solutions and parameters conditioned on noisy observations of the state. For each particle, it first determines likely values based on the observations, then samples around those values. This approach has a strong theoretical foundation, applies to nonlinear models and non-Gaussian distributions, and can estimate any number of model parameters, initial conditions, and model error covariances. The method is called implicit because it updates the particles without forming a predictive distribution of forward model integrations. As a point of comparison for different assimilation techniques, we consider examples in which one or more bifurcations separate the true parameter from its initial approximation. The implicit estimator is asymptotically unbiased, has a root-mean-squared error comparable to or less than the other methods, and is accurate even with small ensemble sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B Stat. Methodol., 72, 269–342.

    Article  MathSciNet  Google Scholar 

  • de Angelis, D. L. (1975). Estimates of predator-prey limit cycles. Bull. Math. Biol., 37, 291–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, L. (1998). Random dynamical systems. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 50, 174–188.

    Article  Google Scholar 

  • Brauer, F., & Castillo-Chavez, C. (2012). Mathematical models in population biology and epidemiology (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Chorin, A. J., & Hald, O. H. (2009). Stochastic tools in mathematics and science (2nd ed.). Dordrecht: Springer.

    Book  MATH  Google Scholar 

  • Chorin, A. J., & Tu, X. (2009). Implicit sampling for particle filters. Proc. Natl. Acad. Sci. USA, 106, 17,249–17,254.

    Article  Google Scholar 

  • Chorin, A. J., Morzfeld, M., & Tu, X. (2010). Implicit particle filters for data assimilation. Commun. Appl. Math. Comput. Sci., 5, 221–240.

    Article  MathSciNet  MATH  Google Scholar 

  • Conn, A. R., Gould, N. I. M., & Toint, P. L. (2000). Trust-region methods. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Cossarini, G., Lermusiaux, P. F. J., & Solidoro, C. (2009). Lagoon of Venice ecosystem: seasonal dynamics and environmental guidance with uncertainty analyses and error subspace data assimilation. J. Geophys. Res., 114. doi:10.1029/2008JC005080.

  • Courtier, P., & Talagrand, O. (1987). Variational assimilation of meteorological observations with the adjoint vorticity equation. II: Numerical results. Q. J. R. Meteorol. Soc., 113, 1329–1347.

    Article  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol., 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Doron, M., Brasseur, P., & Brankart, J.-M. (2011). Stochastic estimation of biogeochemical parameters of a 3D ocean coupled physical-biogeochemical model: twin experiments. J. Mar. Syst., 87, 194–207.

    Article  Google Scholar 

  • Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statist. Comput., 10, 197–208.

    Article  Google Scholar 

  • Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods in practice. New York: Springer.

    Book  MATH  Google Scholar 

  • Dowd, M. (2006). A sequential Monte Carlo approach for marine ecological prediction. Environmetrics, 17, 435–455.

    Article  MathSciNet  Google Scholar 

  • Dowd, M. (2007). Bayesian statistical data assimilation for ecosystem models using Markov chain Monte Carlo. J. Mar. Syst., 68, 439–456.

    Article  Google Scholar 

  • Dowd, M. (2011). Estimating parameters for a stochastic dynamic marine ecological system. Environmetrics, 22, 501–515.

    MathSciNet  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist., 7, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B. (2003). Second thoughts on the bootstrap. Statist. Sci., 18, 135–140.

    Article  MathSciNet  Google Scholar 

  • Evensen, G. (2009). Data assimilation: the ensemble Kalman filter (2nd ed.). Dordrecht: Springer.

    Book  Google Scholar 

  • Fasham, M. J. R., Ducklow, H. W., & McKelvie, S. M. (1990). A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res., 48, 591–639.

    Article  Google Scholar 

  • Fletcher, R. (1987). Practical methods of optimization (2nd ed.). Chichester: Wiley.

    MATH  Google Scholar 

  • Friedrichs, M. A. M. (2002). Assimilation of JGOFS EqPac and SeaWIFS data into a marine ecosystem model of the central equatorial Pacific Ocean. Deep-Sea Res., Part 2, 49, 289–319.

    Article  Google Scholar 

  • Friedrichs, M. A. M., Dusenberry, J. A., Anderson, L. A., Armstrong, R. A., Chai, F., Christian, J. R., Doney, S. C., Dunne, J., Fujii, M., Hood, R., McGillicuddy, D. J. Jr., Moore, J. K., Schartau, M., Spitz, Y. H., & Wiggert, J. D. (2007). Assessment of skill and portability in regional marine biogeochemical models: role of multiple planktonic groups. J. Geophys. Res., 112. doi:10.1029/2006JC003852.

  • Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica, 57, 1317–1339.

    Article  MathSciNet  MATH  Google Scholar 

  • Gilks, W. R., & Berzuini, C. (2001). Following a moving target—Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B Stat. Methodol., 63, 127–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Golightly, A., & Wilkinson, D. J. (2011). Bayesian parameter inference for stochastic biochemical network models using Markov chain Monte Carlo. J. R. Soc. Interface, 1, 807–820.

    Google Scholar 

  • Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F, 140, 107–113.

    Article  Google Scholar 

  • Gregg, W. W. (2008). Assimilation of SeaWIFS ocean chlorophyll data into a three-dimensional global ocean model. J. Mar. Syst., 69, 205–225.

    Article  Google Scholar 

  • Holling, C. S. (1959). Some characteristics of simple types of predation and parasitism. Can. Entomol., 91, 385–398.

    Article  Google Scholar 

  • Hurtt, G. C., & Armstrong, R. A. (1996). A pelagic ecosystem model calibrated with BATS data. Deep-Sea Res., Part 2, 43, 653–683.

    Article  Google Scholar 

  • Hurtt, G. C., & Armstrong, R. A. (1999). A pelagic ecosystem model calibrated with BATS and OWSI data. Deep-Sea Res., Part 1, 46, 27–61.

    Article  Google Scholar 

  • Ionides, E. L., Bretó, C., & King, A. A. (2006). Inference for nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA, 103, 18,438–18,443.

    Article  Google Scholar 

  • Johnson, K. A., & Goody, R. S. (2011). The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry, 50, 8264–8269.

    Article  Google Scholar 

  • Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist., 5, 1–25.

    MathSciNet  Google Scholar 

  • Kivman, G. A. (2003). Sequential parameter estimation for stochastic systems. Nonlinear Process. Geophys., 10, 253–259.

    Article  Google Scholar 

  • Kloeden, P. E., & Platen, E. (1999). Numerical solution of stochastic differential equations. Berlin: Springer.

    Google Scholar 

  • Lawson, L. M., Spitz, Y. H., Hofmann, E. E., & Long, R. B. (1995). A data assimilation technique applied to a predator-prey model. Bull. Math. Biol., 57, 593–617.

    MATH  Google Scholar 

  • Lawson, L. M., Hofmann, E. E., & Spitz, Y. H. (1996). Time series sampling and data assimilation in a simple marine ecosystem model. Deep-Sea Res., Part 2, 43, 625–651.

    Article  Google Scholar 

  • van Leeuwen, P. J. (2009). Particle filtering in geophysical systems. Mon. Weather Rev., 137, 4089–4114.

    Article  Google Scholar 

  • Lehmann, E. L., & Casella, G. (1998). Theory of point estimation (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Liu, J., & West, M. (2001). Combined parameter and state estimation in simulation based filtering. In A. Doucet, N. de Freitas, & N. Gordon (Eds.), Sequential Monte Carlo methods in practice (pp. 197–217). New York: Springer.

    Chapter  Google Scholar 

  • Longhurst, A. (1995). Seasonal cycles of pelagic production and consumption. Prog. Oceanogr., 36, 77–167.

    Article  Google Scholar 

  • Lorenz, E. N. (1963). Deterministic nonperiodic flow. J. Atmospheric Sci., 20, 130–141.

    Article  Google Scholar 

  • Losa, S. N., Kivman, G. A., Schroter, J., & Wenzel, M. (2003). Sequential weak constraint parameter estimation in an ecosystem model. J. Mar. Syst., 43, 31–49.

    Article  Google Scholar 

  • Marjoram, P., Molitor, J., Plagnol, V., & Tavaré, S. (2003). Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA, 100, 15,324–15,328.

    Article  Google Scholar 

  • Matear, R. J. (1995). Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P. J. Mar. Res., 53, 571–607.

    Article  Google Scholar 

  • May, R. M. (1972). Limit cycles in predator-prey communities. Science, 177, 900–902.

    Article  Google Scholar 

  • McLachlan, G. J., & Krishnan, T. (2008). The EM algorithm and extensions (2nd ed.). Hoboken: Wiley.

    Book  MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machines. J. Chem. Phys., 21, 1087–1092.

    Article  Google Scholar 

  • Michaelis, L., & Menten, M. L. (1913). Die Kinetik der Invertinwirkung. Biochem. Z., 49, 333–369.

    Google Scholar 

  • Miller, R. N., Carter, E. F. Jr., & Blue, S. T. (1999). Data assimilation into nonlinear stochastic models. Tellus A, 51, 167–194.

    Article  Google Scholar 

  • Morzfeld, M., & Chorin, A. J. (2012). Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation. Nonlinear Process. Geophys., 19, 365–382.

    Article  Google Scholar 

  • Morzfeld, M., Tu, X., Atkins, E., & Chorin, A. J. (2012). A random map implementation of implicit filters. J. Comput. Phys., 231, 2049–2066.

    Article  MathSciNet  MATH  Google Scholar 

  • Newberger, P. A., Allen, J. S., & Spitz, Y. H. (2003). Analysis and comparison of three ecosystem models. J. Geophys. Res., 108. doi:10.1029/2001JC001182.

  • Øksendal, B. K. (2003). Stochastic differential equations: an introduction with applications (6th ed.). Berlin: Springer.

    Book  Google Scholar 

  • Raftery, A. E., & Bao, L. (2010). Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics, 66, 1162–1173.

    Article  MathSciNet  MATH  Google Scholar 

  • Ripley, B. (1987). Stochastic simulation. New York: Wiley.

    Book  MATH  Google Scholar 

  • Robinson, A. R., & Lermusiaux, P. F. J. (2002). Data assimilation for modeling and predicting coupled physical-biological interactions in the sea. In A. R. Robinson, J. J. McCarthy, & B. J. Rothschild (Eds.), Biological-physical interactions in the sea. The sea (Vol. 12, pp. 475–536). New York: Wiley.

    Google Scholar 

  • Sapsis, T. P., & Lermusiaux, P. F. J. (2009). Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D, 238, 2347–2360.

    Article  MathSciNet  MATH  Google Scholar 

  • Sapsis, T. P., & Lermusiaux, P. F. J. (2012). Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty. Physica D, 241, 60–76.

    Article  MathSciNet  MATH  Google Scholar 

  • Sheather, S. J., & Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. Ser. B, 53, 683–690.

    MathSciNet  MATH  Google Scholar 

  • Sheskin, D. J. (2011). Handbook of parametric and nonparametric statistical procedures (5th ed.). Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • Simon, E., & Bertino, L. (2012). Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation: application to a 1D ocean ecosystem model. J. Mar. Syst., 89, 1–18.

    Article  Google Scholar 

  • Snyder, C., Bengtsson, T., Bickel, P., & Anderson, J. (2008). Obstacles to high-dimensional particle filtering. Mon. Weather Rev., 136, 4629–4640.

    Article  Google Scholar 

  • Spitz, Y. H., Moisan, J. R., & Abbott, M. R. (2001). Configuring an ecosystem model using data from the Bermuda Atlantic Time Series (BATS). Deep-Sea Res., Part 2, 48, 1733–1768.

    Article  Google Scholar 

  • Sugie, J., Kohno, R., & Miyazaki, R. (1997). On a predator-prey system of Holling type. Proc. Amer. Math. Soc., 125, 2041–2050.

    Article  MathSciNet  MATH  Google Scholar 

  • Talagrand, O., & Courtier, P. (1987). Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Q. J. R. Meteorol. Soc., 113, 1311–1328.

    Article  Google Scholar 

  • Vallino, J. J. (2000). Improving marine ecosystem models: use of data assimilation and mesocosm experiments. J. Mar. Res., 58, 117–164.

    Article  Google Scholar 

  • Wilkinson, D. J. (2010). Parameter inference for stochastic kinetic models of bacterial gene regulation: a Bayesian approach to systems biology. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. P. Smith, & M. West (Eds.), Bayesian statistics: Vol9. Proceedings of the ninth Valencia international meeting (pp. 679–706). Oxford: Oxford University Press.

    Google Scholar 

  • Zakai, M. (1969). On the optimal filtering of diffusion processes. Probab. Theory Related Fields, 11, 230–243.

    MathSciNet  MATH  Google Scholar 

  • Zhao, L., Wei, H., Xu, Y., & Feng, S. (2005). An adjoint data assimilation approach for estimating parameters in a three-dimensional ecosystem model. Ecol. Model., 186, 234–249.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ethan Atkins, Professor Alexandre Chorin, and Dr. Matthias Morzfeld for their invaluable contribution to the research and presentation of the results in this paper. We thank Linda Lamb as well for her detailed proofreading. This work was supported by the National Science Foundation, Division of Ocean Sciences, Collaboration in Mathematical Geosciences award #0934956.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad Weir.

Appendix: The Optimization Problem

Appendix: The Optimization Problem

Essential to the applicability of our implicit sampling methods is the optimization step of Algorithm 1. We use the Levenberg–Marquardt method to search for the minimizer ζ . This method is part of a wider class of trust-region (or restricted-step) methods—iterative approaches that restrict the next step to a region centered at the current point (see Fig. 14 for a schematic). At each iteration, the method either expands or contracts the region depending on the ratio of the predicted and actual reductions in the cost function. A notable feature of this method is that it safely handles indefinite Hessians. We use Algorithm 7.3.4 from Conn et al. (2000), which is sketched below. The numerical constants that appear in the method are arbitrary, and the stationary point and rate of convergence of the method are theoretically insensitive to their values. In practice, the constants effect the number of iterations until the algorithm terminates.

Fig. 14
figure 14

Schematic diagram of the cost function in state and parameter space: (solid) the contour lines of the cost function, (dashed) its quadratic approximation at the starting point, (dotted) the trust region centered at that point. The next step in the iteration is always constrained to lie within a trust region. In the case depicted, the constraint is active

Algorithm 3

(Levenberg–Marquardt)

Let the subscript (k) denote the iteration number and suppose we have some initial guess ζ (0) and radius ϵ (0).

  1. 1

    At the current point ζ (k), compute the cost function, its gradient, and Hessian:

    $$J_{(k)} = J( \zeta_{(k)} ), \qquad g_{(k)} = \nabla J( \zeta_{(k)} ),\qquad H_{(k)} = H( \zeta_{(k)} ). $$
  2. 2

    Find the proposed increment Δζ that minimizes the quadratic approximation at the current point, defined such that

    $$K(\zeta_{(k)} + \Delta\zeta) = J_{(k)} + g_{(k)}^T \Delta\zeta + \frac{1}{2} (\Delta\zeta)^T H_{(k)} \Delta\zeta, $$

    constrained to the region where

    $$(\Delta\zeta)^T \Delta\zeta\leq\epsilon_{(k)}^2. $$

    For more details on the solution of quadratic programming problems, see the monograph of Conn et al. (2000).

  3. 3

    Compute the ratio of the actual reduction to predicted reduction of the function at the proposed next step,

    $$r = \frac{ J(\zeta_{(k)}) - J(\zeta_{(k)} + \Delta\zeta)}{ K(\zeta_{(k)}) - K(\zeta_{(k)} + \Delta\zeta)}. $$

    Update the trust region size based on r,

    $$\epsilon_{(k+1)} = \left\{ \begin{array}{l@{\quad}l} \epsilon_{(k)}/2 & \text{if $r < 1/4$}, \\ \min(2 \epsilon_{(k)}, \epsilon_M) & \text{if $r > 3/4$}, \\ \epsilon_{(k)} & \text{otherwise}, \end{array} \right. $$

    where ϵ M is a user specified maximum radius. Move to the next point only if it decreases the cost function, i.e.,

    $$\zeta_{(k+1)} = \left\{ \begin{array}{l@{\quad}l} \zeta_{(k)} + \Delta\zeta & \text{if $0 < r$}, \\ \zeta_{(k)} & \text{otherwise}. \end{array} \right. $$

    Since the proposed increment Δζ minimizes K within the trust region, the denominator of the ratio r is always positive. Hence, the iteration remains at the current step if and only if the predicted step does not decrease the cost function.

  4. 4

    Replace k with k+1, and return to Step 1 until the norm of the gradient g (k) is less than a given value or we reach an upper bound of iterations.

The Derivatives of the Cost Function

The structure of the Hessian of J makes it possible to do these computations efficiently even when the dimension of ζ is large. Since the residuals only depend on the previous and current model step, the Hessian has a single band running down its diagonal, corresponding to the state derivatives, full columns at its far-right side, and full rows at its bottom, both corresponding to the parameter derivatives. We need only store the diagonal, subdiagonals, and bottom rows because the Hessian is symmetric. This representation grows linearly in the number of variables, as opposed to quadratically for the full representation. If the model equations are a discretization of a partial differential equation, we lose this special structure, but numerous libraries exist for optimization when the Hessian is sparse. Thus, the Hessian has the block form

$$H = \left [ \begin{array}{c@{\quad}c} H_{\mathbf{x}\mathbf{x}} & H_{\mathbf{x}\theta} \\ H_{\theta\mathbf{x}} & H_{\theta\theta} \end{array} \right ] , $$

where H xx is a band matrix, and \(H_{\theta\mathbf{x}} = H_{\mathbf{x}\theta}^{T}\) since we assume J is smooth.

To simplify notation, define the (column) vector of residuals

$$\rho= ( \mathbf{e}_{\mathfrak{m}(l)+1:\mathfrak{m}(l+k)}, \mathbf{d}_{l+1:l+k} ). $$

The cost function, its gradient, and its Hessian are thus

$$J(\zeta) = \frac{1}{2} \rho^T \rho, \quad \nabla J= (\nabla \rho)^T \rho, \qquad H = (\nabla\rho)^T ( \nabla\rho) + \sum_i H_{\rho_i} \rho_i, $$

where \(H_{\rho_{i}}\) is the Hessian of the ith element of ρ. We use the Gauss–Newton approximation of the Hessian,

$$H = (\nabla\rho)^T (\nabla\rho). $$

Since the goal of the optimization is to make the norm of the residuals small, we expect the neglected terms to be small as well (Fletcher 1987). The derivatives of the cost function in the unconstrained variables follow from an application of the chain rule. An added benefit of the Gauss–Newton approximation is that it is always positive semi-definite. Hence, we can stop the optimization at any iteration, and it is still possible to sample a Gaussian whose covariance matrix is the Moore–Penrose pseudoinverse of the Hessian.

The nonzero derivatives of the model noise are

and the derivative of the observation noise is

$$\partial\mathbf{d}_n/\partial\mathbf{x}_{\mathfrak{m}(n)} = ( \sqrt{R})^{-1}\partial h(\mathbf{x}_{\mathfrak{m}(n)})/\partial\mathbf {x}_{\mathfrak{m}(n)}. $$

The state derivatives of the Lotka–Volterra model equations (14) are

$$\frac{\partial\phi}{\partial\mathbf{u}} = \left [ \begin{array}{c@{\quad}c} a_1 + 2 a_2 p + a_3 q/(1 + a_7 p)^2 & a_3 p/(1 + a_7 p) \\ a_6 q/(1 + a_7 p)^2 & a_4 + 2 a_5 q + a_6 p/(1 + a_7 p) \end{array} \right ] , $$

and the derivatives for each parameter are

and

$$\frac{\partial\phi}{\partial a_7} = \begin{bmatrix} -a_3 p^2 q/(1 + a_7 p)^2 \\ -a_6 p^2 q/(1 + a_7 p)^2 \end{bmatrix} . $$

Since the observation functions considered are linear, their Jacobians are identical to the functions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weir, B., Miller, R.N. & Spitz, Y.H. Implicit Estimation of Ecological Model Parameters. Bull Math Biol 75, 223–257 (2013). https://doi.org/10.1007/s11538-012-9801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9801-6

Keywords

Navigation