Skip to main content

Advertisement

Log in

A Time Since Recovery Model with Varying Rates of Loss of Immunity

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

For many infectious diseases, immunity wanes over time. The majority of SIRS models assume that this loss of immunity takes place at a constant rate. We study temporary immunity within a SIRS model structure if the rate of loss of immunity can depend on the time since recovery from disease. We determine the conditions under which the endemic steady state becomes unstable and periodic oscillations set in, showing that a fairly rapid change between slow and rapid immunity loss is necessary to produce oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, R. M., & May, R. M. (1992). Infectious diseases of humans. Oxford: Oxford University Press.

    Google Scholar 

  • Blyuss, K. B., & Kyrychko, Y. N. (2010). Stability and bifurcations in an epidemic model with varying immunity period. Bull. Math. Biol., 72, 490–505.

    Article  MathSciNet  MATH  Google Scholar 

  • Brauer, F., & Castillo-Chávez, C. (2001). Mathematical models in population biology and epidemiology. New York: Springer.

    MATH  Google Scholar 

  • Cooke, K. L., & van den Driessche, P. (1996). Analysis of an SEIRS epidemic model with two delays. J. Math. Biol., 35, 240–260.

    Article  MathSciNet  MATH  Google Scholar 

  • Dawes, J. H. P., & Gog, J. R. (2002). The onset of oscillatory dynamics in models of multiple disease strains. J. Math. Biol., 45, 471–510.

    Article  MathSciNet  MATH  Google Scholar 

  • Dietz, K. (1979). Epidemiological interference of virus populations. J. Math. Biol., 8, 291–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson, N. M., Galvani, A. P., & Bush, R. M. (2003). Ecological and immunological determinants of influenza evolution. Nature, 422, 428–433.

    Article  Google Scholar 

  • Glass, K., & Grenfell, B. T. (2003). Antibody dynamics in childhood diseases: waning and boosting of immunity and the impact of vaccination. J. Theor. Biol., 221, 121–131.

    Article  MathSciNet  Google Scholar 

  • Gomes, M. G. M., White, L. J., & Medley, G. F. (2004). Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. J. Theor. Biol., 228, 539–549.

    Article  MathSciNet  Google Scholar 

  • Gomes, M. G. M., Margheri, A., Medley, G. F., & Rebelo, C. (2005). Dynamical behaviour of epidemiological models with sub-optimal immunity and nonlinear incidence. J. Math. Biol., 51, 414–430.

    Article  MathSciNet  MATH  Google Scholar 

  • Heffernan, J. M., & Keeling, M. (2009). Implications of vaccination and waning immunity. Proc. R. Soc. Lond. B, 276, 2071–2080.

    Article  Google Scholar 

  • Hethcote, H. W. (1976). Qualitative analyses of communicable disease models. Math. Biosci., 28, 335–356.

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote, H. W. (1985). A vaccination model for an endemic disease with maternal antibodies in infants. In J. Eisenfeld & C. DeLisi (Eds.), Mathematics and computers in biomedical applications (pp. 283–286). Amsterdam: Elsevier Science Publishers BV.

    Google Scholar 

  • Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Rev., 42, 599–653.

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote, H. W., & Levin, S. A. (1989). Periodicity in epidemiological models. Appl. Math. Ecol., 18, 193–211.

    Article  MathSciNet  Google Scholar 

  • Hethcote, H. W., Stech, H. W., & van den Driessche, P. (1981). Stability analysis for models of diseases without immunity. J. Math. Biol., 13, 185–198.

    Article  MathSciNet  MATH  Google Scholar 

  • Keeling, M. J., & Grenfell, B. T. (1997). Disease extinction and community size: modeling the persistence of measles. Science, 275, 65–67.

    Article  Google Scholar 

  • Kribs-Zaleta, C. M., & Martcheva, M. (2002). Vaccination strategies and backward bifurcation in an age-since-infection structured model. Math. Biosci., 177, 317–332.

    Article  MathSciNet  Google Scholar 

  • Krugman, S., Giles, J. P., Friedman, H., & Stone, S. (1965). Studies on immunity to measles. J. Pediatr., 66, 471–488.

    Article  Google Scholar 

  • Kyrychko, Y. N., & Blyuss, K. B. (2005). Global properties of a delayed sir model with temporary immunity and nonlinear incidence rate. Nonlinear Anal., Real World Appl., 6, 495–507.

    Article  MathSciNet  MATH  Google Scholar 

  • Pease, C. M. (1987). An evolutionary epidemic mechanism, with application to type A influenza. Theor. Popul. Biol., 31, 422–451.

    Article  MATH  Google Scholar 

  • Rouderfer, V., Becker, N. G., & Hethcote, H. W. (1994). Waning immunity and its effects of vaccination schedules. Math. Biosci., 124, 59–82.

    Article  MATH  Google Scholar 

  • Schenzle, D. (1984). An age-structured model of pre-and post-vaccination measles transmission. Math. Med. Biol., 1, 169.

    Article  MathSciNet  MATH  Google Scholar 

  • Stech, H., & Williams, M. (1981). Stability in a class of cyclic epidemic models with delay. J. Math. Biol., 11, 95–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, M. L., & Carr, T. W. (2009). An SIR epidemic model with partial temporary immunity modeled with delay. J. Math. Biol., 59, 841–880.

    Article  MathSciNet  MATH  Google Scholar 

  • Tuck, E. O. (2006). On positivity of Fourier transforms. Bull. Aust. Math. Soc., 74, 133–138.

    Article  MathSciNet  MATH  Google Scholar 

  • White, L. J., & Medley, G. F. (1998). Microparasite population dynamics and continuous immunity. Proc. R. Soc. Lond. B, 265, 1977.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to members of the sLaM and eκoSystems groups for discussion and comments. This work was supported by a 21st Century Science Initiative Grant from the James S. McDonnell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick R. Adler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Adler, F.R. A Time Since Recovery Model with Varying Rates of Loss of Immunity. Bull Math Biol 74, 2810–2819 (2012). https://doi.org/10.1007/s11538-012-9780-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9780-7

Keywords

Navigation