Skip to main content

Advertisement

Log in

Multigeneration Reproduction Ratios and the Effects of Clustered Unvaccinated Individuals on Epidemic Outbreak

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

An SIR epidemiological community-structured model is constructed to investigate the effects of clustered distributions of unvaccinated individuals and the distribution of the primary case relative to vaccination levels. The communities here represent groups such as neighborhoods within a city or cities within a region. The model contains two levels of mixing, where individuals make more intra-group than inter-group contacts. Stochastic simulations and analytical results are utilized to explore the model. An extension of the effective reproduction ratio that incorporates more spatial information by predicting the average number of tertiary infections caused by a single infected individual is introduced to characterize the system. Using these methods, we show that both the vaccination coverage and the variation in vaccination levels among communities affect the likelihood and severity of epidemics. The location of the primary infectious case and the degree of mixing between communities are also important factors in determining the dynamics of outbreaks. In some cases, increasing the efficacy of a vaccine can in fact increase the effective reproduction ratio in early generations, due to the effects of population structure on the likely initial location of an infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, F. R. (1992). The effects of averaging on the basic reproduction ratio. Math. Biosci., 111, 89–98.

    Article  MATH  Google Scholar 

  • Bailey, N. T. (1953). The total size of a general stochastic epidemic. Biometrika, 40(1/2), 177–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Ball, F. (1985). Deterministic and stochastic epidemics with several kinds of susceptibles. Adv. Appl. Probab., 17(1), 1–22.

    Article  MATH  Google Scholar 

  • Ball, F., & Lyne, O. (2006). Optimal vaccination schemes for epidemics among a population of households, with application to variola minor in Brazil. Stat. Methods Med. Res., 15, 481–497.

    MathSciNet  Google Scholar 

  • Ball, F., Mollison, D., & Scalia-Tomba, G. (1997). Epidemics with two levels of mixing. Ann. Appl. Probab., 7(1), 46–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Ball, F. G., Britton, T., & Lyne, O. D. (2004). Stochastic multitype epidemics in a community of households: estimation of threshold parameter R and secure vaccination coverage. Biometrika, 91(2), 345–362.

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour, A. D. (1978). Macdonald’s model and the transmission of bilharzia. Trans. R. Soc. Trop. Med. Hyg., 7e(1), 6–15.

    Article  Google Scholar 

  • Becker, N. G., & Dietz, K. (1995). The effect of household distribution on transmission and control of highly infectious diseases. Math. Biosci., 127, 207–219.

    Article  MATH  Google Scholar 

  • Becker, N. G., & Starczak, D. N. (1997). Optimal vaccination strategies for a community of households. Math. Biosci., 139, 117–132.

    Article  MATH  Google Scholar 

  • Black, S., Shinefield, H., Fireman, B., Lewis, E., Ray, P., Hansen, J. R., Elvin, L., Ensor, K. M., Hackell, J., Siber, G., Malinoski, F., Madore, D., Chang, I., Kohberger, R., Watson, W., Austrian, R., & Edwards, K., The Northern California Kaiser Permanente Vaccine Study Center Group (2000). Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr. Infect. Dis. J., 19(3), 187–195.

    Article  Google Scholar 

  • Briggs, H., & Ilett, S. (1993). Weak link in vaccine cold chain. Br. Med. J., 306, 557–558.

    Article  Google Scholar 

  • Calandrillo, S. P. (2004). Vanishing vaccinations: why are so many Americans opting out of vaccinating their children? Univ. Mich. J. Law Reform, 37(2), 353–440.

    Google Scholar 

  • CDC (1999a). Achievements in public health, 1900–1999: impact of vaccines universally recommended for children—United States, 1990–1998. Morb. Mort. Wkly. Rep., 48(12), 243–248.

    Google Scholar 

  • CDC (1999b). Ten great public health achievements—United States, 1900–1999. Morb. Mort. Wkly. Rep., 48(12), 241–243.

    Google Scholar 

  • Chen, R. T., Davis, R. L., & Sheedy, K. M. (2004). Safety of immunizations. In S. A. Plotkin, W. A. Orenstein, & P. A. Offit (Eds.), Vaccines, 4th edn. (pp. 1557–1581). Philadelphia: Saunders. Chapter 61.

    Google Scholar 

  • Coffield, A. B., Maciosek, M. V., McGinnis, J. M., Harris, J. R., Caldwell, M. B., Teutsch, S. M., Atkins, D., Richland, J. H., & Haddix, A. (2001). Priorities among recommended clinical preventive services. Am. J. Prev. Med., 21(1), 1–9.

    Article  Google Scholar 

  • Davies, P., Abbey, D. M., Schlafly, R., Nasir, L., & Wolfe, R. M. (2002). Antivaccination web sites. J. Am. Med. Assoc., 288(14), 1717–1718.

    Article  Google Scholar 

  • Diekmann, O., Heesterbeek, J., & Metz, J. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28, 365–382.

    Article  MathSciNet  MATH  Google Scholar 

  • d’Onofrio, A., Manfredi, P., & Salinelli, E. (2007). Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theor. Popul. Biol., 71, 301–317.

    Article  MATH  Google Scholar 

  • Dye, C., & Hasibeder, G. (1986). Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans. R. Soc. Trop. Med. Hyg., 80, 69–77.

    Article  Google Scholar 

  • Fine, M. J., Smith, M. A., Carson, C. A., Meffe, F., Sankey, S. S., Weissfeld, L. A., Detsky, A. S., & Kapoor, W. N. (1994). Efficacy of pneumococcal vaccination in adults: a meta-analysis of randomized controlled trials. Arch. Intern. Med., 154(23), 2666–2677.

    Google Scholar 

  • Fine, P. E., & Clarkson, J. A. (1986). Individual versus public priorities in the determination of optimal vaccination policies. Am. J. Epidemiol., 124(6), 1012–1020.

    Google Scholar 

  • Gandon, S., Mackinnon, M., Nee, S., & Read, A. (2003). Imperfect vaccination: some epidemiological and evolutionary consequences. Proc. R. Soc. Lond. B, 270(1520), 1129–1136.

    Article  Google Scholar 

  • Gangarosa, E., Galazka, A., Wolfe, C., Phillips, L., Gangarosa, R., Miller, E., & Chen, R. (1998). Impact of anti-vaccine movements on pertussis control: the untold story. The Lancet, 351, 356–361.

    Article  Google Scholar 

  • Gart, J. J. (1968). The mathematical analysis of an epidemic with two kinds of susceptibles. Biometrics, 24(3), 557–566.

    Article  Google Scholar 

  • Gazmararian, J. A., Oster, N. V., Green, D. C., Schuessler, L., Howell, K., Davis, J., Krovisky, M., & Warburton, S. W. (2002). Vaccine storage practices in primary care physician offices. Am. J. Prev. Med., 23(4), 246–253.

    Article  Google Scholar 

  • Glass, K., Kappey, J., & Grenfell, B. (2004). The effect of heterogeneity in measles vaccination on population immunity. Epidemiol. Infect., 132(4), 675–683.

    Article  Google Scholar 

  • Goldstein, E., Paur, K., Fraser, C., Kenah, E., Wallinga, J., & Lipsitch, M. (2009). Reproductive numbers, epidemic spread and control in a community of households. Math. Biosci., 221, 11–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Gross, P. A., Hermogenes, A. W., Sacks, H. S., Lau, J., & Levandowski, R. A. (1995). The efficacy of influenza vaccine in elderly persons: a meta-analysis and review of the literature. Ann. Intern. Med., 123(7), 518–527.

    Google Scholar 

  • Halloran, M. E., Haber, M., & Longini, I. M., Jr. (1992). Interpretation and estimation of vaccine efficacy under heterogeneity. Am. J. Epidemiol., 136(3), 328–343.

    Google Scholar 

  • Hasibeder, G., & Dye, C. (1988). Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment. Theor. Popul. Biol., 33, 31–53.

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote, H. W. (1978). An immunization model for a heterogeneous population. Theor. Popul. Biol., 14, 338–349.

    Article  MathSciNet  Google Scholar 

  • Hiebeler, D. E. (2006). Moment equations and dynamics of a household SIS epidemiological model. Bull. Math. Biol., 68(6), 1315–1333.

    Article  MathSciNet  Google Scholar 

  • Hiebeler, D. E. (2007). Competing populations on fragmented landscapes with spatially structured heterogeneities: improved landscape generation and mixed dispersal strategies. J. Math. Biol., 54(3), 337–356.

    Article  MathSciNet  MATH  Google Scholar 

  • Hiebeler, D. E., & Criner, A. K. (2007). Partially mixed household epidemiological model with clustered resistant individuals. Phys. Rev. E, 75, 022901.

    Article  Google Scholar 

  • Hodge, J. G., Jr. (2002). School vaccination requirements: legal and social perspectives. NCSL State Legislative Report, 27(14), 1–14.

    MathSciNet  Google Scholar 

  • House, T., & Keeling, M. J. (2008). Deterministic epidemic models with explicit household structure. Math. Biosci., 213, 29–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Jacobson, R. M., Targonski, P. V., & Poland, G. A. (2007). A taxonomy of reasoning flaws in the anti-vaccine movement. Vaccine, 25, 3146–3152.

    Article  Google Scholar 

  • Jacquez, J. A., Simon, C. P., Koopman, J., Sattenspiel, L., & Perry, T. (1988). Modeling and analyzing HIV transmission: the effect of contact patterns. Math. Biosci., 92, 119–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Keeling, M. J., & Grenfell, B. T. (2000). Individual-based perspectives on r 0. J. Theor. Biol., 203, 51–61.

    Article  Google Scholar 

  • Khalili, D., & Caplan, A. (2007). Off the grid: vaccinations among homeschooled children. J. Law Med. Ethics, 35(3), 471–477.

    Article  Google Scholar 

  • Kribs-Zaleta, C. M., & Velasco-Hernández, J. X. (2000). A simple vaccination model with multiple endemic states. Math. Biosci., 164, 183–201.

    Article  MATH  Google Scholar 

  • Lerman, S. J., & Gold, E. (1971). Measles in children previously vaccinated against measles. JAMA, 216(8), 1311–1314.

    Article  Google Scholar 

  • Lu, Z., Chi, X., & Chen, L. (2002). The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math. Comput. Model., 36, 1039–1057.

    Article  MathSciNet  MATH  Google Scholar 

  • Maayan-Metzger, A., Kedem-Friedrich, P., & Kuint, J. (2005). To vaccinate or not to vaccinate—that is the question: why are some mothers opposed to giving their infants hepatitis B vaccine? Vaccine, 23, 1941–1948.

    Article  Google Scholar 

  • Maldonado, Y. A. (2002). Current controversies in vaccination: vaccine safety. JAMA, 228(24), 3155–3158.

    Article  Google Scholar 

  • May, R. M., & Anderson, R. M. (1984). Spatial heterogeneity and the design of immunization programs. Math. Biosci., 72, 83–111.

    Article  MathSciNet  MATH  Google Scholar 

  • May, T., & Silverman, R. D. (2003). Clustering of exemptions’ as a collective action threat to herd immunity. Vaccine, 21, 1048–1051.

    Article  Google Scholar 

  • McNeil, D. G., Jr. (2002). When parents say no to child vaccinations. The New York Times, 30 Nov. 2002.

  • Miller, J. C. (2008). Bounding the size and probability of epidemics on networks. J. Appl. Probab., 45, 498–512.

    Article  MathSciNet  MATH  Google Scholar 

  • Nold, A. (1980). Heterogeneity in disease-transmission modeling. Math. Biosci., 52(3–4), 227–240.

    Article  MathSciNet  MATH  Google Scholar 

  • O’Brien, K. L., Moulton, L. H., Reid, R., Weatherholtz, R., Oski, J., Brown, L., Kumar, G., Parkinson, A., Hu, D., Hackell, J., Chang, I., Kohberger, R., Siber, G., & Santosham, M. (2003). Efficacy and safety of seven-valent conjugate pneumococcal vaccine in American Indian children: group randomised trial. The Lancet, 362(9381), 355–361.

    Article  Google Scholar 

  • Omer, S. B., Pan, W. K., Halsey, N. A., Stokley, S., Moulton, L. H., Navar, A. M., Pierce, M., & Salmon, D. A. (2006). Nonmedical exemptions to school immunization requirements: secular trends and association of state policies with pertussis incidence. J. Am. Med. Assoc., 296(14), 1757–1763.

    Article  Google Scholar 

  • Orenstein, W. A., Douglas, R. G., Rodewald, L. E., & Hinman, A. R. (2005). Immunizations in the United States: success, structure, and stress. Health Aff., 24(3), 599–610.

    Article  Google Scholar 

  • Plotkin, S. L., & Plotkin, S. A. (2004). A short history of vaccination. In S. A. Plotkin, W. A. Orenstein, & P. A. Offit (Eds.), Vaccines, 4th edn. (pp. 1–15). Philadelphia: Saunders. Chapter 1.

    Google Scholar 

  • Poland, G. A., & Jacobson, R. M. (2001). Understanding those who do not understand: a brief review of the anti-vaccine movement. Vaccine, 19, 2440–2445.

    Article  Google Scholar 

  • Reluga, T. C. (2010). Game theory of social distancing in response to an epidemic. PLoS Comput. Biol., 6(5), e1000793.

    Article  MathSciNet  Google Scholar 

  • Reluga, T. C., Bauch, C. T., & Galvani, A. P. (2006). Evolving public perceptions and stability in vaccine uptake. Math. Biosci., 204, 185–198.

    Article  MathSciNet  MATH  Google Scholar 

  • Rushton, S., & Mautner, A. (1955). The deterministic model of a simple epidemic for more than one community. Biometrika, 42, 126–132.

    MathSciNet  MATH  Google Scholar 

  • Salmon, D. A., Haber, M., Gangarosa, E. J., Phillips, L., Smith, N. J., & Chen, R. T. (1999). Health consequences of religious and philosophical exemptions from immunization laws. JAMA, 281(1), 47–53.

    Article  Google Scholar 

  • Salmon, D. A., & Siegel, A. W. (2001). Religious and philosophical exemptions from vaccine requirements and lessons learned from conscientious objectors from conscription. Public Health Rep., 116, 289–295.

    Google Scholar 

  • Schelling, T. C. (2006). Micromotives and macrobehavior. New York: Norton.

    Google Scholar 

  • Silverman, R. D. (2003). No more kidding around: restructuring non-medical childhood immunization exemptions to ensure public health protection. Ann. Health Law, 12, 277–294.

    Google Scholar 

  • Smith, P., Rodrigues, L., & Fine, P. (1984). Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. Int. J. Epidemiol., 13(1), 87–93.

    Article  Google Scholar 

  • Thompson, J. W., Tyson, S., Card-Higginson, P., Jacobs, R. F., Wheeler, J. G., Simpson, P., Bost, J. E., Ryan, K. W., & Salmon, D. A. (2007). Impact of addition of philosophical exemptions on childhood immunization rates. Am. J. Prev. Med., 32(3), 194–201.

    Article  Google Scholar 

  • van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Wallinga, J., Heijne, J. C., & Kretzschmar, M. (2005). A measles epidemic threshold in a highly vaccinated population. PLoS Med., 2(11), 1152–1157.

    Article  Google Scholar 

  • Ward, J. I., Cherry, J. D., Chang, S.-J., Partridge, S., Lee, H., Treanor, J., Greenberg, D. P., Keitel, W., Barenkamp, S., Bernstein, D. I., Edelman, R., & Edwards, K. (2005). Efficacy of an acellular pertussis vaccine among adolescents and adults. N. Engl. J. Med., 353(15), 1555–1563.

    Article  Google Scholar 

  • Whittle, P. (1955). The outcome of a stochastic epidemic—a note on Bailey’s paper. Biometrika, 42(1/2), 116–122.

    Article  MathSciNet  MATH  Google Scholar 

  • Wickwire, K. (1977). Mathematical models for the control of pests and infectious diseases: a survey. Theor. Popul. Biol., 11, 182–238.

    Article  MathSciNet  Google Scholar 

  • With, K. A. (1997). The application of neutral landscape models in conservation biology. Conserv. Biol., 11(5), 1069–1080.

    Article  Google Scholar 

  • Wolfe, R. M., Sharp, L. K., & Lipsky, M. S. (2002). Content and design attributes of antivaccination web sites. JAMA, 287(24), 3245–3248.

    Article  Google Scholar 

  • Wroe, A. L., Bhan, A., Salkovskis, P., & Bedford, H. (2005). Feeling bad about immunising our children. Vaccine, 23, 1428–1433.

    Article  Google Scholar 

  • Zanette, D. H., & Kuperman, M. (2002). Effects of immunization in small-world networks. Physica A, 309, 445–452.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Hiebeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiebeler, D.E., Michaud, I.J., Ackerman, H.H. et al. Multigeneration Reproduction Ratios and the Effects of Clustered Unvaccinated Individuals on Epidemic Outbreak. Bull Math Biol 73, 3047–3070 (2011). https://doi.org/10.1007/s11538-011-9660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9660-6

Keywords

Navigation