Skip to main content
Log in

How Far is Complex Balancing from Detailed Balancing?

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We clarify the relation between the algebraic conditions that must be satisfied by the reaction constants in general (mass–action) kinetics systems for the existence of detailed or complex balancing equilibria. These systems have a wide range of applications in chemistry and biology. Their main properties have been set by Horn, Jackson and Feinberg. We expect to extend our point of view to the study of qualitative features of the dynamical behavior of chemical interactions in molecular systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Angeli, D., de Leenheer, P., & Sontag, E. D. (2007). A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci., 210, 598–618.

    Article  MATH  MathSciNet  Google Scholar 

  • Burack, W. R., & Sturgill, T. (1997). The activating dual phosphorylation of MAPK by MEK is nonprocessive. Biochemistry, 36(20), 5929–5933.

    Article  Google Scholar 

  • Craciun, G., & Feinberg, M. (2006). Multiple equilibria in complex chemical reaction networks: II. The species-reactions graph. SIAM J. Appl. Math., 66(4), 1321–1338.

    Article  MATH  MathSciNet  Google Scholar 

  • Craciun, G., Dickenstein, A., Shiu, A., & Sturmfels, B. (2009). Toric dynamical systems. J. Symb. Comput., 44, 1551–1565.

    Article  MATH  MathSciNet  Google Scholar 

  • Craciun, G., Tang, Y., & Feinberg, M. (2006). Understanding bistability in complex enzymedriven reaction networks. Proc. Natl. Acad. Sci. USA, 103(23), 8697–8702.

    Article  Google Scholar 

  • Ederer, M., & Gilles, E. D. (2007). Thermodynamically feasible kinetic models of reaction networks. Biophys. J., 92(6), 1846–1857.

    Article  Google Scholar 

  • Eisenbud, D., & Sturmfels, B. (1996). Binomial ideals. Duke Math. J., 84(1), 1–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Feinberg, M. (1972/1973). Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal., 49, 187–194.

    Article  MathSciNet  Google Scholar 

  • Feinberg, M. (1979). Lectures on chemical reaction networks. Notes of lectures given at the Mathematics Research Center of the University of Wisconsin in 1979, available at: http://www.che.eng.ohio-state.edu/~FEINBERG/LecturesOnReactionNetworks.

  • Feinberg, M. (1989). Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chem. Eng. Sci., 44(9), 1819–1827.

    Article  Google Scholar 

  • Feinberg, M. (1995). The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal., 132(4), 311–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Ferrell, J. E. Jr., & Bhatt, R. (1997). Mechanistic studies of the dual phosphorylation of mitogenactivated protein kinase. J. Biol. Chem., 272(30), 19008–19016.

    Article  Google Scholar 

  • Gatermann, K., & Wolfrum, M. (2005). Bernstein’s second theorem and Viro’s method for sparse polynomial systems in chemistry. Adv. Appl. Math., 34(2), 252–294.

    Article  MATH  MathSciNet  Google Scholar 

  • Gnacadja, G. (2009). Univalent positive polynomial maps and the equilibrium state of chemical networks of reversible binding reactions. Adv. Appl. Math., 43(4), 394–414.

    Article  MATH  MathSciNet  Google Scholar 

  • Gunawardena, J. (2003). Chemical reaction network theory for in-silico biologists (Technical report). Available at: http://vcp.med.harvard.edu/papers/crnt.pdf.

  • Gunawardena, J. (2007). Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants. Biophys. J., 93, 3828–3834.

    Article  Google Scholar 

  • Gunawardena, J. (2009). Models in systems biology: the parameter problem and the meanings of robustness. In H. Lodhi & S. Muggleton (Eds.), Elements of computational systems biology. New York: Wiley.

    Google Scholar 

  • Horn, F. (1972/1973). Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal., 49, 172–186.

    Article  MathSciNet  Google Scholar 

  • Horn, F. (1973). Stability and complex balancing in mass–action systems with three short complexes. Proc. R. Soc. Lond. Ser. A, 334, 331–342.

    Article  MathSciNet  Google Scholar 

  • Horn, F. (1974). The dynamics of open reaction systems. In Mathematical aspects of chemical and biochemical problems and quantum chemistry (Proc. SIAM–AMS sympos. appl. math., New York, 1974) (pp. 125–137). SIAM–AMS proc.: Vol. VIII. Providence: Am. Math. Soc.

    Google Scholar 

  • Horn, F., & Jackson, R. (1972). General mass action kinetics. Arch. Ration. Mech. Anal., 47, 81–116.

    Article  MathSciNet  Google Scholar 

  • King, E. L., & Altman, C. (1956). A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J. Phys. Chem., 60(10), 1375–1378.

    Article  Google Scholar 

  • Manrai, A., & Gunawardena, J. (2008). The geometry of multisite phosphorylation. Biophys. J., 95, 5533–5543.

    Article  Google Scholar 

  • Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3), 353–359.

    Article  Google Scholar 

  • Schuster, S., & Schuster, R. (1989). A generalization of Wegscheider’s condition. Implications for properties of steady states and for quasi-steady-state approximation. J. Math. Chem., 3, 25–42.

    Article  MathSciNet  Google Scholar 

  • Shinar, G., Alon, U., & Feinberg, M. (2009). Sensitivity and robustness in chemical reaction networks. SIAM J. Appl. Math., 69(4), 977–998.

    Article  MATH  MathSciNet  Google Scholar 

  • Sontag, E. (2001). Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Trans. Autom. Control, 46, 1028–1047.

    Article  MATH  MathSciNet  Google Scholar 

  • Stanley, R. P. (1999). Cambridge studies in advanced mathematics: Vol. 62. Enumerative combinatorics: Vol. 2. Cambridge: Cambridge University Press. With a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin.

    Book  Google Scholar 

  • Vlad, M. O., & Ross, J. (2009). Thermodynamically based constraints for rate coefficients of large biochemical networks. WIREs Syst. Biol. Med., 1(3), 348–358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Pérez Millán.

Additional information

Both authors were partially supported by UBACYT X064, CONICET PIP 112-200801-00483 and ANPCyT PICT-2008-0902, Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickenstein, A., Pérez Millán, M. How Far is Complex Balancing from Detailed Balancing?. Bull Math Biol 73, 811–828 (2011). https://doi.org/10.1007/s11538-010-9611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9611-7

Keywords

Navigation