Skip to main content

Advertisement

Log in

Multiple Stable Periodic Oscillations in a Mathematical Model of CTL Response to HTLV-I Infection

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Stable periodic oscillations have been shown to exist in mathematical models for the CTL response to HTLV-I infection. These periodic oscillations can be the result of mitosis of infected target CD4+ cells, of a general form of response function, or of time delays in the CTL response. In this study, we show through a simple mathematical model that time delays in the CTL response process to HTLV-I infection can lead to the coexistence of multiple stable periodic solutions, which differ in amplitude and period, with their own basins of attraction. Our results imply that the dynamic interactions between the CTL immune response and HTLV-I infection are very complex, and that multi-stability in CTL response dynamics can exist in the form of coexisting stable oscillations instead of stable equilibria. Biologically, our findings imply that different routes or initial dosages of the viral infection may lead to quantitatively and qualitatively different outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asquith, B., & Bangham, C. R. M. (2007). Quantifying HTLV-I dynamics. Immunol. Cell Biol., 85, 280–286.

    Article  Google Scholar 

  • Bangham, C. R. (2000). The immune response to HTLV-I. Curr. Opin. Immunol., 12, 397–402.

    Article  Google Scholar 

  • Bangham, C. R. M. (2003). The immune control and cell-to-cell spread of human T-lymphotropic virus type 1. J. Gen. Virol., 84, 3177–3189.

    Article  Google Scholar 

  • Beretta, E., Carletti, M. et al. (2006). Stability analysis of a mathematical model of the immune response with delays. In Y. Iwasa, K. Sato, & Y. Takeuchi (Eds.), Mathematics for life science and medicine (pp. 179–208). Berlin: Springer.

    Google Scholar 

  • Beretta, E., & Kuang, Y. (2002). Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal., 33, 1144–1165.

    Article  MATH  MathSciNet  Google Scholar 

  • Beretta, E., & Tang, Y. (2003). Extension of a geometric stability switch criterion. Funkcial. Ekvac., 46, 337–361.

    Article  MATH  MathSciNet  Google Scholar 

  • Burić, N., Mudrinic, M., & Vasović, N. (2001). Time delay in a basic model of the immune response. Chaos Solitons Fractals, 12, 483–489.

    Article  MATH  Google Scholar 

  • Carletti, M., & Beretta, E. (2007). Numerical detection of instability regions for delay models with delay-dependent parameters. J. Comput. Appl. Math., 205, 835–848.

    Article  MATH  MathSciNet  Google Scholar 

  • Clark, L. H., Schlosser, P. M., & Selgrade, J. F. (2003). Multiple stable periodic solutions in a model for hormonal control of the menstrual cycle. Bull. Math. Biol., 65, 157–173.

    Article  Google Scholar 

  • Crauste, F. (2009). Delay model of hematopoietic stem cell dynamics: asymptotic stability and stability switch. Math. Model. Nat. Phenom., 4, 28–47.

    MATH  MathSciNet  Google Scholar 

  • Freedman, H. I., Tang, M. X., & Ruan, S. G. (1994). Uniform persistence and flows near a closed positively invariant set. J. Dyn. Differ. Equ., 6, 583–600.

    Article  MATH  MathSciNet  Google Scholar 

  • Gallo, R. C. (2005). History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene, 24, 5926–5930.

    Article  Google Scholar 

  • Gomez-Acevedo, H., & Li, M. Y. (2002). Global dynamics of a mathematical model for HTLV-I infection of T cells. Can. Appl. Math. Q., 10, 71–86.

    MATH  MathSciNet  Google Scholar 

  • Gomez-Acevedo, H., Li, M. Y., & Jacobson, S. (2010). Multi-stability in a model for CTL response to HTLV-I infection and its consequences in HAM/TSP development and prevention. Bull. Math. Biol., 72, 681–696.

    Article  MATH  MathSciNet  Google Scholar 

  • Gyllenberg, M., & Yan, P. (2009). Four limit cycles for a three-dimensional competitive Lotka–Volterra system with a heteroclinic cycle. Comput. Math. Appl., 58, 649–669.

    Article  MATH  MathSciNet  Google Scholar 

  • Hale, J. K., & Lunel, S. V. (1993). Introduction to functional differential equations. New York: Springer.

    MATH  Google Scholar 

  • Hofbauer, J., & So, J. W. (1990). Multiple limit cycles for predator–prey models. Math. Biosci., 99, 71–75.

    Article  MATH  MathSciNet  Google Scholar 

  • Hofbauer, J., & So, J. W. (1994). Multiple limit cycles for three-dimensional Lotka–Volterra equations. Appl. Math. Lett., 7, 65–70.

    Article  MATH  MathSciNet  Google Scholar 

  • Hollsberg, P., & Hafler, D. A. (1993). Pathogenesis of diseases induced by human lymphotropic virus type I infection. N. Engl. J. Med., 328, 1173–1182.

    Article  Google Scholar 

  • Jacobson, S. (2002). Immunopathogenesis of human T-cell lymphotropic virus type I associated neurologic disease. J. Infect. Dis., 186, S187–S192.

    Article  Google Scholar 

  • Koup, R. A., Safrit, J. T., et al. (1994). Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol., 68, 4650–4655.

    Google Scholar 

  • Kubota, R., Osame, M., & Jacobson, S. (2000). Retrovirus: human T-cell lymphotropic virus type I associated diseases and immune dysfunction. In M. W. Cunningham & R. S. Fujinami (Eds.), Effects of microbes on the immune system (pp. 349–371). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Lang, J., & Li, M. Y. (2010). Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection. Preprint.

  • LaSalle, J., & Lefschetz, S. (1961). Stability by Liapunov’s direct method. New York: Academic Press.

    Google Scholar 

  • Li, M. Y., & Shu, H. (2010). Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response. Preprint.

  • Nowak, M. A., & May, R. M. (2000). Virus dynamics: mathematical principles of immunology and virology. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Osame, M., Janssen, R., et al. (1990). Nationwide survey of HTLV-I-associated myelopathy in Japan: association with blood transfusion. Ann. Neurol., 28, 50–56.

    Article  Google Scholar 

  • Perelson, A. S., & Nelson, P. W. (1999). Mathematical analysis of HIV-I dynamics in vivo. SIAM Rev., 41, 3–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Pilyugin, S. S., & Waltman, P. (2003). Multiple limit cycles in the chemostat with variable yield. Math. Biosci., 132, 151–166.

    Article  MathSciNet  Google Scholar 

  • Seto, K., Abe, M. et al. (1995). A rat model of HTLV-I infection: development of chronic progressive myeloneuropathy in seropositive WKAH rats and related apoptosis. Acta Neuropathol., 89, 483–490.

    Article  Google Scholar 

  • Tang, Y., & Zhou, L. (2007). Stability switch and Hopf bifurcation for a diffusive prey–predator system with delay. J. Math. Anal. Appl., 334, 1290–1307.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, K., Wang, W., Pang, H., & Liu, X. (2007). Complex dynamic behavior in a viral model with delayed immune response. Physica D, 226, 197–208.

    MATH  MathSciNet  Google Scholar 

  • Wodarz, D., & Bangham, C. R. M. (2000). Evolutionary dynamics of HTLV-I. J. Mol. Evol., 50, 448–455.

    Google Scholar 

  • Wodarz, D., Nowak, M. A., & Bangham, C. R. M. (1999). The dynamics of HTLV-I and the CTL response. Immunol. Today, 20, 220–227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M.Y., Shu, H. Multiple Stable Periodic Oscillations in a Mathematical Model of CTL Response to HTLV-I Infection. Bull Math Biol 73, 1774–1793 (2011). https://doi.org/10.1007/s11538-010-9591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9591-7

Keywords

Navigation