Skip to main content

Advertisement

Log in

Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, based on SIR and SEIR epidemic models with a general nonlinear incidence rate, we incorporate time delays into the ordinary differential equation models. In particular, we consider two delay differential equation models in which delays are caused (i) by the latency of the infection in a vector, and (ii) by the latent period in an infected host. By constructing suitable Lyapunov functionals and using the Lyapunov–LaSalle invariance principle, we prove the global stability of the endemic equilibrium and the disease-free equilibrium for time delays of any length in each model. Our results show that the global properties of equilibria also only depend on the basic reproductive number and that the latent period in a vector does not affect the stability, but the latent period in an infected host plays a positive role to control disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beretta, E., Hara, T., Ma, W., Takeuchi, Y., 2001. Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal. 47, 4107–4115.

    Article  MATH  MathSciNet  Google Scholar 

  • Beretta, E., Takeuchi, Y., 1995. Global stability of an SIR model with time delays. J. Math. Biol. 33, 250–260.

    Article  MATH  MathSciNet  Google Scholar 

  • Cooke, K.L., van den Driessche, P., 1996. Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. 35, 240–260.

    Article  MATH  MathSciNet  Google Scholar 

  • Cooke, K.L., van den Driessche, P., Zou, X., 1999. Interaction of maturation delay and nolinear birth in population and epidemic models. J. Math. Biol. 39, 332–352.

    Article  MATH  MathSciNet  Google Scholar 

  • Derrick, W.R., van den Driessche, P., 2003. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete Continuous Dyn. Syst., Ser. B 3, 299–309.

    Article  MATH  Google Scholar 

  • Kermack, W.O., McKendrick, A.G., 1927. A contribution to the mathematical theory of epidemics. Proc. R. Soc. A115, 700–721.

    Google Scholar 

  • Korobeinikov, A., Maini, P.K., 2005. Nonlinear incidence and stability of infectious disease models. Math. Med. Biol. 22, 113–128.

    Article  MATH  Google Scholar 

  • Korobeinikov, A., 2006. Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 68, 615–626.

    Article  MathSciNet  Google Scholar 

  • Korobeinikov, A., 2007. Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69, 1871–1886.

    Article  MATH  MathSciNet  Google Scholar 

  • Korobeinikov, A., 2009a. Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence, and nonlinear incidence rate. Math. Med. Biol. 26, 225–239.

    Article  MATH  MathSciNet  Google Scholar 

  • Korobeinikov, A., 2009b. Stability of ecosystem: Global properties of a general prey-predator model. Math. Medic. Biol. (in print). http://imammb.oxfordjournals.org/cgi/reprint/dqp009.

  • Kuang, Y., 1993. Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego.

    MATH  Google Scholar 

  • Kyrychko, Y.N., Blyuss, K.B., 2005. Global properties of a delay SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Anal. 6, 495–507.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W., Hethcote, H.W., Levin, S.A., 1987. Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380.

    Article  MATH  MathSciNet  Google Scholar 

  • Ma, W., Song, M., 2004. Global stability for an SIR epidemic model with time delay. Appl. Math. Lett. 17, 1141–1145.

    Article  MATH  MathSciNet  Google Scholar 

  • McCluskey, C.C., 2009a. Complete global stability for an SIR epidemic model with delay-distributed or discrete. Nonlinear Anal. doi:10.10.16/j.nonrwa.2008.10.014.

    Google Scholar 

  • McCluskey, C.C., 2009b. Global stability for an SIER epidemiological model with varying infectivity and infinite delay. Math. Biosci. Eng. 6, 603–610.

    Article  MATH  MathSciNet  Google Scholar 

  • Meng, X., Chen, L., Wu, B., 2009. A delay SIR epidemic model with pulse vaccination and incubation times. Nonlinear Anal. doi:10.1016/j.nonrwa.2008.10.041.

    Google Scholar 

  • Rost, G., Wu, J., 2008. SEIR epidemiological model with varying infectivity and infinite delay. Math. Biosci. Eng. 5, 389–402.

    MathSciNet  Google Scholar 

  • Smith, H.L., 1983. Subharmonic bifurcation in an SIR epidemic model. J. Math. Biol. 17, 163–177.

    Article  MATH  MathSciNet  Google Scholar 

  • van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Xu, R., Ma, Z., 2009. Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Anal. 10, 3175–3189.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao, Z., Chen, L., Song, X., 2008. Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate. Math. Comput. Simul. 79, 500–510.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G., Takeuchi, Y., Ma, W. et al. Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate. Bull. Math. Biol. 72, 1192–1207 (2010). https://doi.org/10.1007/s11538-009-9487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9487-6

Navigation