Skip to main content

Advertisement

Log in

Goodness of Fit of Probability Distributions for Sightings as Species Approach Extinction

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Estimating the probability that a species is extinct and the timing of extinctions is useful in biological fields ranging from paleoecology to conservation biology. Various statistical methods have been introduced to infer the time of extinction and extinction probability from a series of individual sightings. There is little evidence, however, as to which of these models provide adequate fit to actual sighting records. We use L-moment diagrams and probability plot correlation coefficient (PPCC) hypothesis tests to evaluate the goodness of fit of various probabilistic models to sighting data collected for a set of North American and Hawaiian bird populations that have either gone extinct, or are suspected of having gone extinct, during the past 150 years. For our data, the uniform, truncated exponential, and generalized Pareto models performed moderately well, but the Weibull model performed poorly. Of the acceptable models, the uniform distribution performed best based on PPCC goodness of fit comparisons and sequential Bonferroni-type tests. Further analyses using field significance tests suggest that although the uniform distribution is the best of those considered, additional work remains to evaluate the truncated exponential model more fully. The methods we present here provide a framework for evaluating subsequent models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beg, M.A., 1982. Optimal tests and estimators for truncated exponential families. Metrika 29, 103–13.

    Article  MATH  MathSciNet  Google Scholar 

  • Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B Met. 57, 289–00.

    MATH  MathSciNet  Google Scholar 

  • Beirlant, J., Goegebeur, Y., Segars, J., Teugels, J., 2005. Statistics of Extremes: Theory and Applications. Wiley, Hoboken.

    Google Scholar 

  • Burgman, M.A., Grimson, R.C., Ferson, S., 1995. Inferring threat from scientific collections. Conserv. Biol. 9, 923–28.

    Article  Google Scholar 

  • Casella, G., Berger, R., 1990. Statistical Inference. Wadsworth and Brooks/Cole, Pacific Grove.

    MATH  Google Scholar 

  • Chowdhury, J.U., Stedinger, J.R., Lu, L.-H., 1991. Goodness-of-fit tests for regional generalized extreme value flood distributions. Water Resour. Res. 27, 1765–776.

    Article  Google Scholar 

  • Collar, N.J., 1998. Extinction by assumption; or the Romeo error on Cebu. Oryx 32, 239–44.

    Article  Google Scholar 

  • David, H.A., Nagaraja, H.N., 2003. Order Statistics, 3rd edn. Wiley, Hoboken.

    MATH  Google Scholar 

  • Douglas, E.M., Vogel, R.M., 2006. The probabilistic behavior of the flood of record in the United States. J. Hydrol. Eng. 11, 482–88.

    Article  Google Scholar 

  • Douglas, E.M., Vogel, R.M., Kroll, C.N., 2000. Trends in flood and low flows in the United States. J. Hydrol. 240, 90–05.

    Article  Google Scholar 

  • Filliben, J.J., 1975. The probability plot correlation coefficient test for normality. Technometrics 17, 111–17.

    Article  MATH  Google Scholar 

  • Heo, J.-H., Kho, Y.W., Shin, H., Kim, S., Kim, T., 2008. Regression equations of probability plot correlation coefficient test statistics from several probability distributions. J. Hydrol. 335(1–4), 1–5.

    Article  Google Scholar 

  • Hosking, J.R.M., 1990. L-moments: Analysis and estimation of distributions using linear combinations or order statistics. J. R. Stat. Soc. B Met. 52, 105–24.

    MATH  MathSciNet  Google Scholar 

  • Hosking, J.R.M., Wallis, J.R., 1987. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 9, 339–49.

    Article  MathSciNet  Google Scholar 

  • Hosking, J.R.M., Wallis, J.R., 1997. Regional Frequency Analysis: An Approach Based on L-moments. Cambridge Univ. Press, New York.

    Google Scholar 

  • Kottegoda, N.T., Rosso, R., 1997. Statistics, Probability, and Environmental Engineers. McGraw-Hill, New York.

    Google Scholar 

  • Livezey, R.E., Chen, W.Y., 1983. Statistical field significance: Monte Carlo techniques. Mon. Weather Rev. 111, 46–9.

    Article  Google Scholar 

  • Marshall, C.R., 1995. Distinguishing between sudden and gradual extinctions in the fossil record: Predicting the position of the Cretaceous-Tertiary iridium anomaly using the ammonite fossil record on Seymour Island, Antarctica. Geology. 23, 731–34.

    Article  Google Scholar 

  • Marshall, C.R., Ward, P.D., 1996. Sudden and gradual molluscan extinctions in the latest Cretaceous of western European Tethys. Science 274, 1360–363

    Article  Google Scholar 

  • McCarthy, M.A., 1998. Identifying declining and threatened species with museum data. Biol. Conserv. 83, 9–7.

    Article  MathSciNet  Google Scholar 

  • Reed, J.M., 1996. Using statistical probability to increase confidence of inferring species extinction. Conserv. Biol. 10, 1283–285.

    Article  Google Scholar 

  • Rice, W.R., 1989. Analyzing tables of statistical tests. Evolution 43, 223–25.

    Article  Google Scholar 

  • Roberts, D.L., Solow, A.R., 2003. When did the Dodo become extinct? Nature 426, 245.

    Article  Google Scholar 

  • Simes, R.J., 1986. An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751–54.

    Article  MATH  MathSciNet  Google Scholar 

  • Solow, A.R., 1993a. Inferring extinction from sighting data. Ecology 74, 962–64.

    Article  Google Scholar 

  • Solow, A.R., 1993b. Inferring extinction in a declining population. J. Math. Biol. 32, 79–2.

    Article  MATH  Google Scholar 

  • Solow, A.R., 2005. Inferring extinction from a sighting record. Math. Biosci. 195, 47–5.

    Article  MATH  MathSciNet  Google Scholar 

  • Solow, A.R., Roberts, D.L., Robbirt, K.M., 2006. On the Pleistocene extinctions of Alaskan mammoths and horses. Proc. Natl. Acad. Sci. USA 103, 7351–353.

    Article  Google Scholar 

  • Solow, A., Seymour, A., Beet, A., Harris, S., 2008. The untamed shrew: On the termination of an eradication programme for an introduced species. J. Appl. Ecol. 45, 424–27.

    Article  Google Scholar 

  • Springer, M.S., 1990. The effect of random range truncations on patterns of evolution in the fossil record. Paleobiology 16, 512–20.

    Google Scholar 

  • Stedinger, J.R., Vogel, R.M., Foufoula-Georgiou, E., 1993. Frequency analysis of extreme events. In: Maidment, D.R. (Ed.), Handbook of Hydrology, pp. 18.1–8.68. McGraw-Hill, New York.

    Google Scholar 

  • Thompson, E.M., Baise, L.G., Vogel, R.M., 2007. A global index earthquake approach to probabilistic assessment of extremes. J. Geophys. Res. 112, B06314. doi:10.1029/2006JB004543.

    Article  Google Scholar 

  • Ventura, V., Paciorek, C.J., Risbey, J.S., 2004. Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J. Climate 17, 4343–356.

    Article  Google Scholar 

  • Vogel, R.M., Fennessey, N.M., 1993. L-moment diagrams should replace product-moment diagrams. Water Resour. Res. 29, 1745–752.

    Article  Google Scholar 

  • Vogel, R.M., Kroll, C.N., 1989. Low-flow frequency analysis using probability plot correlation coefficients. J. Water Resour. Plan. Manag. 115, 338–57.

    Article  Google Scholar 

  • Wang, S.C., Marshall, C.R., 2004. Improved confidence intervals for estimating the position of a mass extinction boundary. Paleobiology 30, 5–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, R.M., Hosking, J.R.M., Elphick, C.S. et al. Goodness of Fit of Probability Distributions for Sightings as Species Approach Extinction. Bull. Math. Biol. 71, 701–719 (2009). https://doi.org/10.1007/s11538-008-9377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9377-3

Keywords

Navigation