Skip to main content
Log in

A Quasistationary Analysis of a Stochastic Chemical Reaction: Keizer’s Paradox

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

For a system of biochemical reactions, it is known from the work of T.G. Kurtz [J. Appl. Prob. 8, 344 (1971)] that the chemical master equation model based on a stochastic formulation approaches the deterministic model based on the Law of Mass Action in the infinite system-size limit in finite time. The two models, however, often show distinctly different steady-state behavior. To further investigate this “paradox,” a comparative study of the deterministic and stochastic models of a simple autocatalytic biochemical reaction, taken from a text by the late J. Keizer, is carried out. We compute the expected time to extinction, the true stochastic steady state, and a quasistationary probability distribution in the stochastic model. We show that the stochastic model predicts the deterministic behavior on a reasonable time scale, which can be consistently obtained from both models. The transition time to the extinction, however, grows exponentially with the system size. Mathematically, we identify that exchanging the limits of infinite system size and infinite time is problematic. The appropriate system size that can be considered sufficiently large, an important parameter in numerical computation, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, L.J.S., 2003. An Introduction to Stochastic Processes with Applications to Biology. Pearson Education.

  • Ashih, A.C.W., 2001. Spatial and stochastic models for population growth with sexual and asexual reproduction, Ph.D. Thesis, Duke University.

  • Baras, F., Mansour, M.M., Pearson, J.E., 1996. Microscopic simulation of chemical bistability in homogeneous systems. J. Chem. Phys. 105, 8257–8261.

    Article  Google Scholar 

  • Chung, K.-L., 1967. Markov Chains with Stationary Transition Probabilities. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Courant R., Hilbert, D., 1952. Methods of Mathematical Physics. Interscience Pub., New York.

    Google Scholar 

  • Epstein, I.R., Pojman, J.A., 1998. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press.

  • Ethier, S.N., Kurtz, T.G., 1986. Markov Processes: Characterization and Convergence, John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Érdi, P., Tóth, J., 1989. Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. Manchester University Press.

  • Gillespie, D., 1976. General method for numerically simulating stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    Article  Google Scholar 

  • Grasman, J., van Herwaarden, O.A., 1999. Asymptotic Methods for the Fokker-Planck equation and the Exit Problem in Applications. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Hänggi, H.G., Talkner, P., Thomas, H., 1984. Bistable systems: master equation versus Fokker-Planck modeling. Phys. Rev. A. 29, 371–378.

    Article  MathSciNet  Google Scholar 

  • Heuett, W.J., Qian, H., 2006. Grand canonical Markov model: a stochastic theory for open nonequilibrium biochemical networks. J. Chem. Phys. 124, 044110.

    Article  Google Scholar 

  • Keizer, J., 1987. Statistical Thermodynamics of Nonequilibrium Processes. Springer-Verlag, New York.

    Google Scholar 

  • Kurtz, T.G., 1971. Limit theorems for sequences of jump Markov processes approximating ordinary differential equations. J. Appl. Prob. 8, 344–356.

    Article  MATH  MathSciNet  Google Scholar 

  • Kurtz, T.G. (1972. The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57, 2976–2978.

    Article  Google Scholar 

  • Leontovich, M.A., 1935. Basic equations of the kinetic gas theory from the point of view of the theory of random processes (in Russian). Zh. Teoret. Ehksper. Fiz. 5, 211–231.

    Google Scholar 

  • Luo, J.-L., Van der Broeck, C., Nicolis, G., 1984. Stability criteria and fluctuations around nonequilibrium states. Z. Phys. B. Cond. Matt. 56, 165–170.

    Article  Google Scholar 

  • McAdams, H.H., Arkin, A., 1999. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65–69.

    Article  Google Scholar 

  • McQuarrie, D.A., 1967. Stochastic approach to chemical kinetics. J. Appl. Prob. 4, 413–478.

    Article  MATH  MathSciNet  Google Scholar 

  • Murray, J.D., 2002. Mathematical Biology I: An Introduction, 3rd Ed. Springer, New York.

    MATH  Google Scholar 

  • Nasell, I., 2001. Extinction and quasi-stationarity in the Verhulst logistic model, J. Theor. Biol. 211, 11–27.

    Article  Google Scholar 

  • Noyes, R.M., Field, R.J., 1974. Oscillatory chemical reactions. Ann. Rev. Phys. Chem. 25, 95–119.

    Article  Google Scholar 

  • Paulsson, J., Berg, O.G., Ehrenberg, M., 2000. Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. USA 97, 7148–7153.

    Article  Google Scholar 

  • Qian, H., Reluga, T.C., 2005. Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch. Phys. Rev. Lett. 94, 028101.

    Article  Google Scholar 

  • Qian, H., Saffarian, S., Elson, E. L., 2002, Concentration fluctuations in a mesoscopic oscillation chemical reaction system. Proc. Natl. Acad. Sci. USA 99, 10376–10381.

    Article  MATH  MathSciNet  Google Scholar 

  • Reddy, V.T.N., 1975. On the existence of the steady state in the stochastic Volterra-Lotka model. J. Stat. Phys. 13, 61–64.

    Article  Google Scholar 

  • Samoilov, M., Plyasunov, S., Arkin, A.P., 2005, Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc. Natl. Acad. Sci. USA 102, 2310–2315.

    Article  Google Scholar 

  • Schnakenberg, J., 1976. Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48, 571–585.

    Article  MathSciNet  Google Scholar 

  • Sipos, T., Tóth, J., Érdi, P., 1974a. Stochastic simulation of complex chemical reactions by digital computer, I. The model. Reaction Kinetics Catalysis Lett. 1, 113–117.

    Article  Google Scholar 

  • Sipos, T., Tóth, J., Érdi, P., 1974b. Stochastic simulation of complex chemical reactions by digital computer, II. Applications. Reaction Kinetics Catalysis Lett. 1, 209–213.

    Article  Google Scholar 

  • Smolen, P., Baxter, D.A., Byrne, J.H., 2000. Modeling transcriptional control in gene networks — methods, recent results, and future directions. Bull. Math. Biol. 62, 247–292.

    Article  Google Scholar 

  • Srivastava, R., You, L., Summers, J., Yin, J., 2002. Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218, 309–321.

    Article  MathSciNet  Google Scholar 

  • Taylor, H.M., Karlin, S., 1998. An Introduction to Stochastic Modeling, 3rd Ed. Academic Press, New York.

    MATH  Google Scholar 

  • Turner, T.E., Schnell, S., Burrage, K., 2004. Stochastic approaches for modeling in vivo reactions. Comput. Biol. Chem. 28, 165–178.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa Vellela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vellela, M., Qian, H. A Quasistationary Analysis of a Stochastic Chemical Reaction: Keizer’s Paradox. Bull. Math. Biol. 69, 1727–1746 (2007). https://doi.org/10.1007/s11538-006-9188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9188-3

Keywords

Navigation