Skip to main content

Advertisement

Log in

Mathematical Models for Hantavirus Infection in Rodents

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Hantavirus pulmonary syndrome is an emerging disease of humans that is carried by wild rodents. Humans are usually exposed to the virus through geographically isolated outbreaks. The driving forces behind these outbreaks is poorly understood. Certainly, one key driver of the emergence of these viruses is the virus population dynamics within the rodent population. Two new mathematical models for hantavirus infection in rodents are formulated and studied. The new models include the dynamics of susceptible, exposed, infective, and recovered male and female rodents. The first model is a system of ordinary differential equations while the second model is a system of stochastic differential equations. These new models capture some of the realistic dynamics of the male/female rodent hantavirus interaction: higher seroprevalence in males and variability in seroprevalence levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, G., Kenkre, V.M., 2002. Spatiotemporal patterns in hantavirus infection. Phys. Rev. E 66, 011912, 1–5.

    Article  Google Scholar 

  • Abramson, G., Kenkre, V.M., Yates, T.L., Parmenter, R.R., 2003. Traveling waves of infection in the hantavirus epidemics. Bull. Math. Biol. 65, 519–534.

    Article  PubMed  Google Scholar 

  • Allen, E.J., 1999. Stochastic differential equations and persistence time for two interacting populations. Dyn. Cont. Discrete Impulsive Syst. 5, 271–281.

    MATH  Google Scholar 

  • Allen, L.J.S., Allen, E.J., 2003. A comparison of three different stochastic population models with regard to persistence time. Theor. Pop. Biol. 64, 439–449.

    Article  MATH  Google Scholar 

  • Allen, L.J.S., 2003. An Introduction to Stochastic Processes with Applications to Biology. Prentice Hall: Upper Saddle River, N.J.

  • Allen, L.J.S., Cormier, P.J., 1996. Environmentally-driven epizootics. Math. Biosci. 131, 51–80.

    Article  PubMed  MATH  Google Scholar 

  • Allen, L.J.S., Langlais, M., Phillips, C., 2003. The dynamics of two viral infections in a single host population with applications to hantavirus. Math. Biosci. 186, 191–217.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Caswell, H., 2001. Matrix Population Models: Construction, Analysis and Interpretation. 2nd ed. Sinauer Associates, Sunderland, MA.

  • Bernshtein, A.D., Apekina, N.S., Mikhailova, T.V., Myasnikov Y.A., Khlyap, L.A., Korotkov, Y.S., Gavrilovskaya, I.N., 1999. Dynamics of Puumala hantavirus infection in naturally infected bank voles (Clethrinomys glareolus). Arch. Virol. 144, 2415–2428.

    Article  PubMed  Google Scholar 

  • CDC MMWR, 2002. Hantavirus pulmonary syndrome—United States: Updated recommendations for risk reduction, July 26, 2002, 51 (RR09), 1–12.

    Google Scholar 

  • CDC NCID, 2004. Special Pathogens Branch. El Niño Special Report: Could El Niño cause an outbreak of hantavirus disease in the southwestern United States? Last reviewed June 18, 2004. Retrieved from http://www.cdc.gov/ncidod/diseases/hanta/hps/noframes/elnino.htm

  • Childs, J.E., Ksiazek, T.G., Spiropoulou, C.F., Krebs, J.W., Morzunov, S., Maupin, G.O., Gage, K.L., Rollin, P.E., Sarisky, J., Enscore, R.E., Frey, J.K., Peters, C.J., Nichol, S.T., 1994. Serologic and genetic identification of Peromyscus maniculatus as the primary rodent reservoir for a new hantavirus in the Southwestern United States. J. Infect. Dis. 169, 1271–1280.

    PubMed  Google Scholar 

  • Chu, Y.-K., Owen, R.D., Gonzalez, L., Jonsson, C.B., 2003. The complex ecology of hantavirus in Paraguay. Am. J. Trop. Med. Hyg. 69, 263–268.

    PubMed  Google Scholar 

  • Davis, B., Schmidley, D.J., 1994. The Mammals of Texas. Texas Parks and Wildlife Press, Austin, TX.

  • Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J., 1990. On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382.

    Article  PubMed  MathSciNet  MATH  Google Scholar 

  • Glass, G.E., Livingston, W., Mills, J.N., Hlady, W.G., Fine, J.B., Biggler, W., Coke, T., Frazier, D., Atherley, S., Rollin, P.E., Ksiazek, T.G., Peters, C.J., Childs, J.E., 1998. Black Creek Canal Virus infection in Sigmodon hispidus in southern Florida. Am. J. Trop. Med. Hyg. 59, 699–703.

    PubMed  Google Scholar 

  • Hethcote, H.W., 2000. The mathematics of infectious disease. SIAM Rev. 42, 599–653.

    Article  MATH  MathSciNet  Google Scholar 

  • Iannelli, M., Martcheva, M., Milner, F.A., 2005. Gender-Structured Population Modeling Mathematical Methods, Numerics, and Simulations. SIAM Frontiers in Applied Mathematics, Philadelphia, PA.

  • Kirupaharan, N., Allen, L.J.S., 2004. Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality. Bull. Math. Biol. 66, 841–864.

    Article  PubMed  MathSciNet  Google Scholar 

  • Klein, S.L., Bird, B.H., Glass, G.E., 2001. Sex differences in immune responses and viral shedding following Seoul virus infection in Norway rats. Am. J. Trop. Med. Hyg. 65, 57–63.

    PubMed  Google Scholar 

  • Kloeden, P.E., Platen, E., 1992. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Kloeden, P.E., Platen, E., Schurz, H., 1997. Numerical Solution of SDE through Computer Experiments. Springer-Verlag, Berlin.

    Google Scholar 

  • Ksiazek, T.G., Nichol, S.T., Mills, J.N., Groves, M.G., Wozniak, A., McAdams, S., Monroe, M.C., Johnson, A.M., Martin, M.L., Peters, C.J., Rollin, P.E., 1997. Isolation, genetic diversity, and geographic distribution of Bayou virus (Bunyaviridae: Hantavirus) Am. J. Trop. Med. Hyg. 57, 445–448.

    Google Scholar 

  • Langlois, J.P., Fahrig, L., Merriam, G., Artsob, H., 2001. Landscape structure influences continental distribution of hantavirus in deer mice. Landscape Ecol. 16, 255–266.

    Article  Google Scholar 

  • Lee, H.W., van der Groen, G., 1989. Hemorrhagic fever with renal syndrome. Prog. Med. Virol. 36, 92–102.

    Google Scholar 

  • McIntyre, N.E., Chu, Y.K., Owen, R.D., Abuzeineh, A., De La Sancha, N., Dick, C.W., Holsomback, T., Nisbet, R.A., Jonsson, C., 2005. A longitudinal study of Bayou virus, hosts, and habitat. Am. J. Trop. Med. Hyg. 73(6), 1043–1049.

    Google Scholar 

  • Mena-Lorca, J., Hethcote, H.W., 1992. Dynamic models of infectious diseases as regulators of population sizes. J. Math. Biol. 30, 693–716.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Mills, J.N., Ksiazek, T.G., Ellis, B.A., Rollin, P.E., Nichol, S.T., Yates, T.L., Gannon, W.L., Levy, C.E., Engelthaler, D.M., Davis, T., Tanda, D.T., Frampton, J.W., Nichols, C.R., Peters, C.J., Childs, J.E., 1997. Patterns of association with mammals in the major biotic communities of the southwestern United States. Am. J. Trop. Med. Hyg. 56, 273–284.

    PubMed  Google Scholar 

  • Monroe, M.C., Morzunov, S.P., Johnson, A.M., Bowen, M.D., Artsob, H., Yates, T., Peters, C.J., Rollin. P.E., Ksizaek, T.G., Nichol, S.T., 1999. Genetic diversity and distribution of Peromyscus-borne hantaviruses in North America. Emerg. Infect. Dis. 5, 75–86.

    PubMed  Google Scholar 

  • Plyusnin, A., Morzunov, S.P., 2001. Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Curr. Top. Microbiol. Immunol. 256, 47–75.

    PubMed  Google Scholar 

  • Sauvage, F., Langlais, M., Yoccoz, N.G., Pontier, D., 2003. Modelling hantavirus in fluctuating populations of bank voles: The role of indirect transmission on virus persistence. J. Anim. Ecol. 72, 1–13.

    Article  Google Scholar 

  • Schmaljohn, C., Hjelle, B., 1997. Hantaviruses: A global disease problem. Emerg. Infect. Dis. 3, 95–104.

    Article  PubMed  Google Scholar 

  • Song, J.W., Baek, L.J., Gajdusek, D.C., Yanagihara, R., Gavrilovskaya, I., Luft, B.J., Mackow, E.R., Hjelle, B., 1994. Isolation of pathogenic hantavirus from white-footed mouse (Peromyscus leucopus). Lancet 344, 1637.

    Google Scholar 

  • van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Yahnke, C.J., Meserve, P.L., Ksiazek, T.G., Mills, J.N., 2001. Patterns of infection with Laguna Negra virus in wild populations of Calomys laucha in the central Paraguayan chaco. Am. J. Trop. Med. Hyg. 65, 768–776.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. S. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, L.J.S., McCormack, R.K. & Jonsson, C.B. Mathematical Models for Hantavirus Infection in Rodents. Bull. Math. Biol. 68, 511–524 (2006). https://doi.org/10.1007/s11538-005-9034-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9034-4

Keywords

Navigation