Skip to main content
Log in

Hurwitz theory and the double ramification cycle

  • Original Article
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

This survey grew out of notes accompanying a cycle of lectures at the workshop Modern Trends in Gromov–Witten Theory, in Hannover. The lectures are devoted to interactions between Hurwitz theory and Gromov–Witten theory, with a particular eye to the contributions made to the understanding of the Double Ramification Cycle, a cycle in the moduli space of curves that compactifies the double Hurwitz locus. We explore the algebro-combinatorial properties of single and double Hurwitz numbers, and the connections with intersection theoretic problems on appropriate moduli spaces. We survey several results by many groups of people on the subject, but, perhaps more importantly, collect a number of conjectures and problems which are still open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich D., Caporaso L., Payne S.: The tropicalization of the moduli space of curves. Ann. Sci. Éc. Norm. Supér. (4) 48, 765–809 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Atiyah M.F., Bott R.: The moment map and equivariant cohomology. Topology 23, 1–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertrand B., Brugallé E., Mikhalkin G.: Tropical open Hurwitz numbers. Rend. Semin. Mat. Univ. Padova 125, 157–171 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Buryak, S. Shadrin, L. Spitz and D. Zvonkine, Integrals of \({\psi}\)-classes over double ramification cycles, preprint, arXiv:1211.5273.

  5. L. Caporaso, Gonality of algebraic curves and graphs, In: Algebraic and Complex Geometry, Springer Proc. Math. Stat., 71, Springer-Verlag, 2014, pp. 77–108.

  6. Cavalieri R., Johnson P., Markwig H.: Tropical Hurwitz numbers. J. Algebraic Combin. 32, 241–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavalieri R., Johnson P., Markwig H.: Wall crossings for double Hurwitz numbers. Adv. Math. 228, 1894–1937 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cavalieri R., Marcus S.: Geometric perspective on piecewise polynomiality of double Hurwitz numbers. Canad. Math. Bull. 57, 749–764 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Cavalieri, H. Markwig and D. Ranganathan, Tropical compactification and the Gromov–Witten theory of \({\mathbb{P}^1}\), preprint, arXiv:1410.2837.

  10. R. Cavalieri, H. Markwig and D. Ranganathan, Tropicalizing the space of admissible covers, preprint, arXiv:1401.4626.

  11. R. Cavalieri and E. Miles, Riemann Surfaces and Algebraic Curves. A First Course in Hurwitz Theory, London Math. Soc. Stud. Texts, Cambridge Univ. Press, Cambridge, to appear (2016).

  12. Ekedahl T., Lando S., Shapiro M., Vainshtein A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146, 297–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fantechi B., Pandharipande R.: Stable maps and branch divisors. Compositio Math. 130, 345–364 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math., 129, Springer-Verlag, 1991.

  15. Goulden I.P., Jackson D.M.: Transitive factorisations into transpositions and holomorphic mappings on the sphere. Proc. Amer. Math. Soc. 125, 51–60 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. I.P. Goulden, D.M. Jackson and R. Vakil, Towards the geometry of double Hurwitz numbers, preprint, arXiv:math/0309440v1.

  17. I.P. Goulden, D.M. Jackson and R. Vakil, A short proof of the \({\lambda_g}\)-conjecture without Gromov–Witten theory: Hurwitz theory and the moduli of curves, preprint, arXiv:math/0604297.

  18. Graber T., Pandharipande R.: Localization of virtual classes. Invent. Math. 135, 487–518 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Graber T., Vakil R.: On the tautological ring of \({\overline{\mathscr{M}}_{g,n}}\). Turkish J. Math. 25, 237–243 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Graber T., Vakil R.: Hodge integrals and Hurwitz numbers via virtual localization. Compositio Math. 135, 25–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Graber and R. Vakil, Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, preprint, arXiv:math/0309227.

  22. S. Grushevsky and D. Zakharov, The double ramification cycle and the theta divisor, preprint, arXiv:1206.7001.

  23. S. Grushevsky and D. Zakharov, The zero section of the universal semiabelian variety, and the double ramification cycle, preprint, arXiv:1206.3534.

  24. R. Hain, Normal functions and the geometry of moduli spaces of curves, preprint, arXiv:1102.4031.

  25. J. Harris and I. Morrison, Moduli of Curves, Grad. Texts in Math., 187, Springer-Verlag, 1998.

  26. K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil and E. Zaslow, Mirror Symmetry, Clay Math. Monogr., 1, Amer. Math. Soc., Providence, RI, 2003.

  27. Hurwitz A.: Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 39, 1–60 (1891)

    Article  MathSciNet  Google Scholar 

  28. F. Janda, R. Pandharipande, A. Pixton and D. Zvonkine, Double ramification cycles on the moduli spaces of curves, preprint, arXiv:1602.04705.

  29. P. Johnson, Hurwitz numbers, ribbon graphs, and tropicalization, In: Tropical Geometry and Integrable Systems, Contemp. Math., 580, Amer. Math. Soc., Providence, RI, 2012, pp. 55–72.

  30. Johnson P., Pandharipande R., Tseng H.-H.: Abelian Hurwitz–Hodge integrals. Michigan Math. J. 60, 171–198 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kazarian M.: KP hierarchy for Hodge integrals. Adv. Math. 221, 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Kock, Notes on psi classes, http://mat.uab.es/~kock/GW/notes/psi-notes.pdf, 2001.

  33. J. Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, London Math. Soc. Stud. Texts, 59, Cambridge Univ. Press, Cambridge, 2004.

  34. S. Marcus and J. Wise, Stable maps to rational curves and the relative Jacobian, preprint, arXiv:1310.5981.

  35. D. Mumford, Toward an enumerative geometry of the moduli space of curves, In: Arithmetic and Geometry. II, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–326.

  36. A. Okounkov and R. Pandharipande, Gromov–Witten theory, Hurwitz numbers, and matrix models, In: Algebraic Geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., 80, Amer. Math. Soc., Providence, RI, 2009, pp. 325–414.

  37. R. Pandharipande, Cycles on the moduli space of curves, 2015, https://sites.google.com/site/2015summerinstitute/home/videos_notes.

  38. Pandharipande R., Pixton A., Zvonkine D.: Relations on \({\overline{\mathscr{M}_{g,n}}}\) via 3-spin structures. J. Amer. Math. Soc. 28, 279–309 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shadrin S.: On the structure of Goulden–Jackson–Vakil formula. Math. Res. Lett. 16, 703–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shadrin S., Shapiro M., Vainshtein A.: Chamber behavior of double Hurwitz numbers in genus 0. Adv. Math. 217, 79–96 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shadrin S., Zvonkine D.: Changes of variables in ELSV-type formulas. Michigan Math. J. 55, 209–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. N. Tarasca, Double total ramifications for curves of genus 2, preprint, arXiv:1401.3057.

  43. R. Vakil, The moduli space of curves and Gromov–Witten theory, In: Enumerative Invariants in Algebraic Geometry and String Theory, Lecture Notes in Math., 1947, Springer-Verlag, 2008, pp. 143–198.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Cavalieri.

Additional information

Communicated by: Hiraku Nakajima

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalieri, R. Hurwitz theory and the double ramification cycle. Jpn. J. Math. 11, 305–331 (2016). https://doi.org/10.1007/s11537-016-1495-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-016-1495-3

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation