Skip to main content
Log in

Targeting Met and VEGFR Axis in Metastatic Castration-Resistant Prostate Cancer: ‘Game Over’?

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Despite recent advances that have been made in the therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC), effective management of bone metastases remains a key goal not yet reached. The receptor tyrosine kinase MET and the vascular endothelial growth factor receptor (VEGFR) seem to play an important role in prostate cancer progression and pathological bone turnover, representing potential targets for improving clinical outcomes in mCRPC. Studies evaluating agents that target one or both these pathways have demonstrated modest activity but no improvement in overall survival. Nevertheless, this therapeutic strategy seems to still be a promising and engaging area of prostate cancer research and the interest in better understanding the MET/VEGFR axis and the mechanism of action of these inhibitors is growing. This review describes the rationale for targeting MET and VEGFR pathway in mCRPC and provides the clinical data available to date and an update on ongoing trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality world-wide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. doi:10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  2. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000;31(5):578–83.

    Article  CAS  PubMed  Google Scholar 

  3. Scher HI, Chung LW. Bone metastases: improving the therapeutic index. Semin Oncol. 1994;21(5):630–56.

    CAS  PubMed  Google Scholar 

  4. Weinfurt KP, Li Y, Castel LD, Saad F, Timbie JW, Glendenning GA, et al. The significance of skeletal-related events for the health-related quality of life of patients with metastatic prostate cancer. Ann Oncol. 2005;16(4):579–84. doi:10.1093/annonc/mdi122.

    Article  CAS  PubMed  Google Scholar 

  5. Bracarda S, Sisani M, Marrocolo F, Hamzaj A, Del Buono S, Altavilla A. Clinical implications for a treatment algorithm and differential indication to hormone therapy and chemotherapy options in metastatic castrate-resistant prostate cancer: a personal view. Expert Rev Anticancer Ther. 2014;14(11):1283–94. doi:10.1586/14737140.2014.965686.

    Article  CAS  PubMed  Google Scholar 

  6. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147–54. doi:10.1016/S0140-6736(10)61389-X.

    Article  PubMed  CAS  Google Scholar 

  7. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364(21):1995–2005. doi:10.1056/NEJMoa1014618.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebocontrolled phase 3 study. Lancet Oncol. 2012;13(10):983–92. doi:10.1016/S1470-2045(12)70379-0.

    Article  CAS  PubMed  Google Scholar 

  9. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187–97. doi:10.1056/NEJMoa1207506.

    Article  CAS  PubMed  Google Scholar 

  10. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22. doi:10.1056/NEJMoa1001294.

    Article  CAS  PubMed  Google Scholar 

  11. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23. doi:10.1056/NEJMoa1213755.

    Article  CAS  PubMed  Google Scholar 

  12. Casimiro S, Guise TA, Chirgwin J. The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol. 2009;310(1–2):71–81. doi:10.1016/j.mce.2009.07.004.

    Article  CAS  PubMed  Google Scholar 

  13. Percival RC, Urwin GH, Harris S, Yates AJ, Williams JL, Beneton M, et al. Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. Eur J Surg Oncol. 1987;13(1):41–9.

    CAS  PubMed  Google Scholar 

  14. Clarke NW, McClure J, George NJ. Osteoblast function and osteomalacia in metastatic prostate cancer. Eur Urol. 1993;24(2):286–90.

    CAS  PubMed  Google Scholar 

  15. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8(2):98–101.

    CAS  PubMed  Google Scholar 

  16. Trouvin AP, Goeb V. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Int Aging. 2010;5:345–54. doi:10.2147/CIA.S10153.

    CAS  Google Scholar 

  17. Lee RJ, Smith MR. Targeting MET and vascular endothelial growth factor receptor signaling in castration-resistant prostate cancer. Cancer J. 2013;19(1):90–8. doi:10.1097/PPO.0b013e318281e280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25. doi:10.1038/nrm1261.

    Article  CAS  PubMed  Google Scholar 

  19. Blumenschein Jr GR, Mills GB, Gonzalez-Angulo AM. Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J Clin Oncol. 2012;30(26):3287–96. doi:10.1200/JCO.2011.40.3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Humphrey PA, Zhu X, Zarnegar R, Swanson PE, Ratliff TL, Vollmer RT, et al. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol. 1995;147(2):386–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pisters LL, Troncoso P, Zhau HE, Li W, von Eschenbach AC, Chung LW. c-met proto-oncogene expression in benign and malignant human prostate tissues. J Urol. 1995;154(1):293–8.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang S, Zhau HE, Osunkoya AO, Iqbal S, Yang X, Fan S, et al. Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells. Mol Cancer. 2010;9:9. doi:10.1186/1476-4598-9-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Knudsen BS, Gmyrek GA, Inra J, Scherr DS, Vaughan ED, Nanus DM, et al. High expression of the Met receptor in prostate cancer metastasis to bone. Urology. 2002;60(6):1113–7.

    Article  PubMed  Google Scholar 

  24. Boccaccio C, Sabatino G, Medico E, Girolami F, Follenzi A, Reato G, et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature. 2005;434(7031):396–400. doi:10.1038/nature03357.

    Article  CAS  PubMed  Google Scholar 

  25. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308. doi:10.1158/1535-7163.MCT-11-0264.

    Article  CAS  PubMed  Google Scholar 

  26. Peters S, Adjei AA. MET: a promising anticancer therapeutic target. Nat Rev Clin Oncol. 2012;9(6):314–26. doi:10.1038/nrclinonc.2012.71.

    Article  CAS  PubMed  Google Scholar 

  27. Pfeiffer MJ, Smit FP, Sedelaar JP, Schalken JA. Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol Med. 2011;17(7–8):657–64. doi:10.2119/molmed.2010.00143.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sirotnak FM, She Y, Khokhar NZ, Hayes P, Gerald W, Scher HI. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol Carcinog. 2004;41(3):150–63. doi:10.1002/mc.20051.

    Article  CAS  PubMed  Google Scholar 

  29. Verras M, Lee J, Xue H, Li TH, Wang Y, Sun Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res. 2007;67(3):967–75. doi:10.1158/0008-5472.CAN-06-3552.

    Article  CAS  PubMed  Google Scholar 

  30. Pallares J, Rojo F, Iriarte J, Morote J, Armadans LI, de Torres I. Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. Histol Histopathol. 2006;21(8):857–65.

    CAS  PubMed  Google Scholar 

  31. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993;143(2):401–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gettman MT, Pacelli A, Slezak J, Bergstralh EJ, Blute M, Zincke H, et al. Role of microvessel density in predicting recurrence in pathologic Stage T3 prostatic adenocarcinoma. Urology. 1999;54(3):479–85.

    Article  CAS  PubMed  Google Scholar 

  33. Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol. 2001;158(3):1111–20. doi:10.1016/S0002-9440(10)64058-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 2005;225(1):1–26. doi:10.1016/j.canlet.2004.09.044.

    Article  CAS  PubMed  Google Scholar 

  35. Humphrey PA, Halabi S, Picus J, Sanford B, Vogelzang NJ, Small EJ, et al. Prognostic significance of plasma scatter factor/hepatocyte growth factor levels in patients with metastatic hormone- refractory prostate cancer: results from cancer and leukemia group B 150005/9480. Clin Genitourin Cancer. 2006;4(4):269–74. doi:10.3816/CGC.2006.n.006.

    Article  CAS  PubMed  Google Scholar 

  36. Bok RA, Halabi S, Fei DT, Rodriquez CR, Hayes DF, Vogelzang NJ, et al. Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res. 2001;61(6):2533–6.

    CAS  PubMed  Google Scholar 

  37. George DJ, Halabi S, Shepard TF, Vogelzang NJ, Hayes DF, Small EJ, et al. Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res. 2001;7(7):1932–6.

    CAS  PubMed  Google Scholar 

  38. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299–309. doi:10.1016/j.ccr.2005.09.005.

    Article  CAS  PubMed  Google Scholar 

  39. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15(3):232–9. doi:10.1016/j.ccr.2009.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220–31. doi:10.1016/j.ccr.2009.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3(4):347–61.

    Article  PubMed  Google Scholar 

  42. Zhang YW, Su Y, Volpert OV, Vande Woude GF. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A. 2003;100(22):12718–23. doi:10.1073/pnas.2135113100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA, et al. HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res. 2010;70(24):10090–100. doi:10.1158/0008-5472.CAN-10-0489.

    Article  CAS  PubMed  Google Scholar 

  44. Inaba M, Koyama H, Hino M, Okuno S, Terada M, Nishizawa Y, et al. Regulation of release of hepatocyte growth factor from human promyelocytic leukemia cells, HL-60, by 1,25-dihydroxyvitamin D3, 12-O-tetradecanoylphorbol 13-acetate, and dibutyryl cyclic aden-osine monophosphate. Blood. 1993;82(1):53–9.

    CAS  PubMed  Google Scholar 

  45. Grano M, Galimi F, Zambonin G, Colucci S, Cottone E, Zallone AZ, et al. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc Natl Acad Sci U S A. 1996;93(15):7644–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Street J, Lenehan B. Vascular endothelial growth factor regulates osteoblast survival - evidence for an autocrine feedback mechanism. J Orthop Surg Res. 2009;4:19. doi:10.1186/1749-799X-4-19.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zelzer E, Olsen BR. Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol. 2005;65:169–87. doi:10.1016/S0070-2153(04)65006-X.

    Article  CAS  PubMed  Google Scholar 

  48. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.

    Article  CAS  PubMed  Google Scholar 

  49. Picus J, Halabi S, Kelly WK, Vogelzang NJ, Whang YE, Kaplan EB, et al. A phase 2 study of estramustine, docetaxel, and bevacizumab in men with castrate-resistant prostate cancer: results from Cancer and Leukemia Group B Study 90006. Cancer. 2011;117(3):526–33. doi:10.1002/cncr.25421.

    Article  CAS  PubMed  Google Scholar 

  50. Kelly WK, Halabi S, Carducci M, George D, Mahoney JF, Stadler WM, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol. 2012;30(13):1534–40. doi:10.1200/JCO.2011.39.4767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol. 2008;26(2):242–5. doi:10.1200/JCO.2007.12.4008.

    Article  CAS  PubMed  Google Scholar 

  52. Bilusic M, Wong YN. Anti-angiogenesis in prostate cancer: knocked down but not out. Asian J Androl. 2014;16(3):372–7. doi:10.4103/1008-682X.125903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sonpavde G, Periman PO, Bernold D, Weckstein D, Fleming MT, Galsky MD, et al. Sunitinib malate for metastatic castration-resistant prostate cancer following docetaxel-based chemotherapy. Ann Oncol. 2010;21(2):319–24. doi:10.1093/annonc/mdp323.

    Article  CAS  PubMed  Google Scholar 

  54. Dror Michaelson M, Regan MM, Oh WK, Kaufman DS, Olivier K, Michaelson SZ, et al. Phase II study of sunitinib in men with advanced prostate cancer. Ann Oncol. 2009;20(5):913–20. doi:10.1093/annonc/mdp111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Michaelson MD, Oudard S, Ou YC, Sengelov L, Saad F, Houede N, et al. Randomized, placebo-controlled, phase III trial of sunitinib plus prednisone versus prednisone alone in progressive, metastatic, castration-resistant prostate cancer. J Clin Oncol. 2014;32(2):76–82. doi:10.1200/JCO.2012.48.5268.

    Article  CAS  PubMed  Google Scholar 

  56. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5(10):835–44. doi:10.1038/nrd2130.

    Article  CAS  PubMed  Google Scholar 

  57. Awada A, Hendlisz A, Gil T, Bartholomeus S, Mano M, de Valeriola D, et al. Phase I safety and pharmacokinetics of BAY 43–9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer. 2005;92(10):1855–61. doi:10.1038/sj.bjc.6602584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Clark JW, Eder JP, Ryan D, Lathia C, Lenz HJ. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43–9006, in patients with advanced, refractory solid tumors. Clin Cancer Res. 2005;11(15):5472–80. doi:10.1158/1078-0432.CCR-04-2658.

    Article  CAS  PubMed  Google Scholar 

  59. Moore M, Hirte HW, Siu L, Oza A, Hotte SJ, Petrenciuc O, et al. Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43–9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol. 2005;16(10):1688–94. doi:10.1093/annonc/mdi310.

    Article  CAS  PubMed  Google Scholar 

  60. Steinbild S, Mross K, Frost A, Morant R, Gillessen S, Dittrich C, et al. A clinical phase II study with sorafenib in patients with progressive hormone-refractory prostate cancer: a study of the CESAR Central European Society for Anticancer Drug Research-EWIV. Br J Cancer. 2007;97(11):1480–5. doi:10.1038/sj.bjc.6604064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chi KN, Ellard SL, Hotte SJ, Czaykowski P, Moore M, Ruether JD, et al. A phase II study of sorafenib in patients with chemo-naive castration-resistant prostate cancer. Ann Oncol. 2008;19(4):746–51. doi:10.1093/annonc/mdm554.

    Article  CAS  PubMed  Google Scholar 

  62. Dahut WL, Scripture C, Posadas E, Jain L, Gulley JL, Arlen PM, et al. A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res. 2008;14(1):209–14. doi:10.1158/1078-0432.CCR-07-1355.

    Article  CAS  PubMed  Google Scholar 

  63. Aragon-Ching JB, Jain L, Gulley JL, Arlen PM, Wright JJ, Steinberg SM, et al. Final analysis of a phase II trial using sorafenib for metastatic castration-resistant prostate cancer. BJU Int. 2009;103(12):1636–40. doi:10.1111/j.1464-410X.2008.08327.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Safarinejad MR. Safety and efficacy of sorafenib in patients with castrate resistant prostate cancer: a Phase II study. Urol Oncol. 2010;28(1):21–7. doi:10.1016/j.urolonc.2008.06.003.

    Article  CAS  PubMed  Google Scholar 

  65. Zaborowska M, Szmit S, Szczylik C. Sorafenib in progressive castrate-resistant prostate cancer. Can we talk about a new therapeutic option? Arch Med Sci. 2012;8(3):528–32. doi:10.5114/aoms.2012.29408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A. 2002;99(17):11393–8. doi:10.1073/pnas.172398299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coleman RL, Duska LR, Ramirez PT, Heymach JV, Kamat AA, Modesitt SC, et al. Phase 1–2 study of docetaxel plus aflibercept in patients with recurrent ovarian, primary peritoneal, or fallopian tube cancer. Lancet Oncol. 2011;12(12):1109–17. doi:10.1016/S1470-2045(11)70244-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Isambert N, Freyer G, Zanetta S, You B, Fumoleau P, Falandry C, et al. Phase I dose-escalation study of intravenous aflibercept in combination with docetaxel in patients with advanced solid tumors. Clin Cancer Res. 2012;18(6):1743–50. doi:10.1158/1078-0432.CCR-11-1918.

    Article  CAS  PubMed  Google Scholar 

  69. Tannock IF, Fizazi K, Ivanov S, Karlsson CT, Flechon A, Skoneczna I, et al. Aflibercept versus placebo in combination with docetaxel and prednisone for treatment of men with metastatic castration-resistant prostate cancer (VENICE): a phase 3, double-blind randomised trial. Lancet Oncol. 2013;14(8):760–8. doi:10.1016/S1470-2045(13)70184-0.

    Article  CAS  PubMed  Google Scholar 

  70. Lu L, Payvandi F, Wu L, Zhang LH, Hariri RJ, Man HW, et al. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res. 2009;77(2):78–86. doi:10.1016/j.mvr.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  71. Dredge K, Marriott JB, Macdonald CD, Man HW, Chen R, Muller GW, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 2002;87(10):1166–72. doi:10.1038/sj.bjc.6600607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bartlett JB, Michael A, Clarke IA, Dredge K, Nicholson S, Kristeleit H, et al. Phase I study to determine the safety, tolerability and immunostimulatory activity of thalidomide analogue CC-5013 in patients with metastatic malignant melanoma and other advanced cancers. Br J Cancer. 2004;90(5):955–61. doi:10.1038/sj.bjc.6601579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dahut WL, Aragon-Ching JB, Woo S, Tohnya TM, Gulley JL, Arlen PM, et al. Phase I study of oral lenalidomide in patients with refractory metastatic cancer. J Clin Pharmacol. 2009;49(6):650–60. doi:10.1177/0091270009335001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sanborn SL, Gibbons J, Krishnamurthi S, Brell JM, Dowlati A, Bokar JA, et al. Phase I trial of docetaxel given every 3 weeks and daily lenalidomide in patients with advanced solid umors. Investig New Drugs. 2009;27(5):453–60. doi:10.1007/s10637-008-9200-x.

    Article  CAS  Google Scholar 

  75. Nabhan C, Patel A, Villines D, Tolzien K, Kelby SK, Lestingi TM. Lenalidomide monotherapy in chemotherapy-naive, castration-resistant prostate cancer patients: final results of a phase II study. Clin Genitourin Cancer. 2014;12(1):27–32. doi:10.1016/j.clgc.2013.09.001.

    Article  PubMed  Google Scholar 

  76. Petrylak DP, Vogelzang NJ, Budnik N, Wiechno PJ, Sternberg CN, Doner K, et al. Docetaxel and prednisone with or without lenalidomide in chemotherapy-naive patients with metastatic castration-resistant prostate cancer (MAINSAIL): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2015;16(4):417–25. doi:10.1016/S1470-2045(15)70025-2.

    Article  CAS  PubMed  Google Scholar 

  77. Isaacs JT, Pili R, Qian DZ, Dalrymple SL, Garrison JB, Kyprianou N, et al. Identification of ABR-215050 as lead second generation quinoline-3-carboxamide anti-angiogenic agent for the treatment of prostate cancer. Prostate. 2006;66(16):1768–78. doi:10.1002/pros.20509.

    Article  CAS  PubMed  Google Scholar 

  78. Isaacs JT. The long and winding road for the development of tasquinimod as an oral second-generation quinoline-3-carboxamide antiangiogenic drug for the treatment of prostate cancer. Exp Opin Invest Drugs. 2010;19(10):1235–43. doi:10.1517/13543784.2010.514262.

    Article  CAS  Google Scholar 

  79. Olsson A, Bjork A, Vallon-Christersson J, Isaacs JT, Leanderson T. Tasquinimod (ABR-215050), a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors. Mol Cancer. 2010;9:107. doi:10.1186/1476-4598-9-107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bjork P, Bjork A, Vogl T, Stenstrom M, Liberg D, Olsson A, et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 2009;7(4):e97. doi:10.1371/journal.pbio.1000097.

    Article  PubMed  CAS  Google Scholar 

  81. Pili R, Haggman M, Stadler WM, Gingrich JR, Assikis VJ, Bjork A, et al. Phase II randomized, double-blind, placebocontrolled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J Clin Oncol. 2011;29(30):4022–8. doi:10.1200/JCO.2011.35.6295.

    Article  CAS  PubMed  Google Scholar 

  82. Carducci M, Armstrong A, Pili R, Ng S, Huddart R, Agarwal N et al., editors. A phase 3, randomized, double-blind, placebo-controlled study of tasquinimod (TASQ) in men with metastatic castrate resistant prostate cancer (mCRPC) [abstract no. 4BA]. European Cancer Congress (ECC); 2015; Vienna.

  83. Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 2005;65(10):4389–400. doi:10.1158/0008-5472.CAN-04-4409.

    Article  CAS  PubMed  Google Scholar 

  84. Ryan CJ, Stadler WM, Roth B, Hutcheon D, Conry S, Puchalski T, et al. Phase I dose escalation and pharmacokinetic study of AZD2171, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinase, in patients with hormone refractory prostate cancer (HRPC). Investig New Drugs. 2007;25(5):445–51. doi:10.1007/s10637-007-9050-y.

    Article  CAS  Google Scholar 

  85. Dahut WL, Madan RA, Karakunnel JJ, Adelberg D, Gulley JL, Turkbey IB, et al. Phase II clinical trial of cediranib in patients with metastatic castration-resistant prostate cancer. BJU Int. 2013;111(8):1269–80. doi:10.1111/j.1464-410X.2012.11667.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oliner J, Min H, Leal J, Yu D, Rao S, You E, et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell. 2004;6(5):507–16. doi:10.1016/j.ccr.2004.09.030.

    Article  CAS  PubMed  Google Scholar 

  87. Herbst RS, Hong D, Chap L, Kurzrock R, Jackson E, Silverman JM, et al. Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol. 2009;27(21):3557–65. doi:10.1200/JCO.2008.19.6683.

    Article  CAS  PubMed  Google Scholar 

  88. Seon BK, Haba A, Matsuno F, Takahashi N, Tsujie M, She X, et al. Endoglin-targeted cancer therapy. Curr Drug Deliv. 2011;8(1):135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, et al. Defective angiogenesis in mice lacking endoglin. Science. 1999;284(5419):1534–7.

    Article  CAS  PubMed  Google Scholar 

  90. Rosen LS, Hurwitz HI, Wong MK, Goldman J, Mendelson DS, Figg WD, et al. A phase I first-in-human study of TRC105(anti-endoglin antibody) in patients with advanced cancer. Clin Cancer Res. 2012;18(17):4820–9. doi:10.1158/1078-0432.CCR-12-0098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Karzai FH, Apolo AB, Cao L, Madan RA, Adelberg DE, Parnes H, et al. A phase I study of TRC105 anti-endoglin (CD105) antibody in metastatic castration-resistant prostate cancer. BJU Int. 2014. doi:10.1111/bju.12986.

    Google Scholar 

  92. Kelsey R. Prostate cancer: phase I study shows potential of TRC105 in mCRPC. Nat Rev Urol. 2015;12(1):6. doi:10.1038/nrurol.2014.336.

    Article  PubMed  Google Scholar 

  93. Giordano S. Rilotumumab, a mAb against human hepatocyte growth factor for the treatment of cancer. Curr Opin Mol Ther. 2009;11(4):448–55.

    CAS  PubMed  Google Scholar 

  94. Ryan CJ, Rosenthal M, Ng S, Alumkal J, Picus J, Gravis G, et al. Targeted MET inhibition in castration-resistant prostate cancer: a randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. Clin Cancer Res. 2013;19(1):215–24. doi:10.1158/1078-0432.CCR-12-2605.

    Article  CAS  PubMed  Google Scholar 

  95. Eathiraj S, Palma R, Volckova E, Hirschi M, France DS, Ashwell MA, et al. Discovery of a novel mode of protein kinase inhibition characterized by the mechanism of inhibition of human mesenchymal-epithelial transition factor (c-Met) protein autophosphorylation by ARQ 197. J Biol Chem. 2011;286(23):20666–76. doi:10.1074/jbc.M110.213801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yap TA, Olmos D, Brunetto AT, Tunariu N, Barriuso J, Riisnaes R, et al. Phase I trial of a selective c-MET inhibitor ARQ 197 incorporating proof of mechanism pharmacodynamic studies. J Clin Oncol. 2011;29(10):1271–9. doi:10.1200/JCO.2010.31.0367.

    Article  CAS  PubMed  Google Scholar 

  97. Monk P, Liu G, Stadler WM, Geyer SM, Sexton JL, Wright JJ et al. Phase II randomized, double-blind, placebo-controlled study of tivantinib in men with asymptomatic or minimally symptomatic metastatic castrate-resistant prostate cancer (mCRPC) [abstract no.146]. J Clin Oncol. 2015; 33: (Suppl. 7)

  98. Dai Y, Siemann DW. BMS-777607, a small-molecule met kinase inhibitor, suppresses hepatocyte growth factor-stimulated prostate cancer metastatic phenotype in vitro. Mol Cancer Ther. 2010;9(6):1554–61. doi:10.1158/1535-7163.MCT-10-0359.

    Article  CAS  PubMed  Google Scholar 

  99. Dai J, Zhang H, Karatsinides A, Keller JM, Kozloff KM, Aftab DT, et al. Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions. Clin Cancer Res. 2014;20(3):617–30. doi:10.1158/1078-0432.CCR-13-0839.

    Article  CAS  PubMed  Google Scholar 

  100. Nguyen HM, Ruppender N, Zhang X, Brown LG, Gross TS, Morrissey C, et al. Cabozantinib inhibits growth of androgen-sensitive and castration-resistant prostate cancer and affects bone remodeling. PLoS One. 2013;8(10):e78881. doi:10.1371/journal.pone.0078881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Haider MT, Hunter KD, Robinson SP, Graham TJ, Corey E, Dear TN, et al. Rapid modification of the bone microenvironment following short-term treatment with Cabozantinib in vivo. Bone. 2015;81:581–92. doi:10.1016/j.bone.2015.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R, et al. Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29(19):2660–6. doi:10.1200/JCO.2010.32.4145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gordon MS, Vogelzang NJ, Schoffski P, Daud A, Spira AI, O’Keeffe BA et al. Activity of cabozantinib (XL184) in soft tissue and bone: results of a phase II randomized discontinuation trial (RDT) in patients (pts) with advanced solid tumors [abstract no. 3010]. J Clin Oncol. 2011; 29 (Suppl. 15)

  104. Smith DC, Smith MR, Sweeney C, Elfiky AA, Logothetis C, Corn PG, et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol. 2013;31(4):412–9. doi:10.1200/JCO.2012.45.0494.

    Article  CAS  PubMed  Google Scholar 

  105. Lee RJ, Smith MR. Cabozantinib and prostate cancer: inhibiting seed and disrupting soil? Clin Cancer Res. 2014;20(3):525–7. doi:10.1158/1078-0432.CCR-13-2636.

    Article  CAS  PubMed  Google Scholar 

  106. Smith MR, Sweeney CJ, Corn PG, Rathkopf DE, Smith DC, Hussain M, et al. Cabozantinib in chemotherapy-pretreated metastatic castration-resistant prostate cancer: results of a phase II nonrandomized expansion study. J Clin Oncol. 2014;32(30):3391–9. doi:10.1200/JCO.2013.54.5954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Basch E, Autio KA, Smith MR, Bennett AV, Weitzman AL, Scheffold C, et al. Effects of cabozantinib on pain and narcotic use in patients with castration-resistant prostate cancer: results from a phase 2 nonrandomized expansion cohort. Eur Urol. 2015;67(2):310–8. doi:10.1016/j.eururo.2014.02.013.

    Article  CAS  PubMed  Google Scholar 

  108. Lee RJ, Saylor PJ, Michaelson MD, Rothenberg SM, Smas ME, Miyamoto DT, et al. A dose-ranging study of cabozantinib in men with castration-resistant prostate cancer and bone metastases. Clin Cancer Res. 2013;19(11):3088–94. doi:10.1158/1078-0432.CCR-13-0319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Smith MR, De Bono JS, Sternberg CN, Le Moulec S, Oudard S, De Giorgi U et al. Final analysis of COMET-1: Cabozantinib (Cabo) versus prednisone (Pred) in metastatic castration-resistant prostate cancer (mCRPC) patients (pts) previously treated with docetaxel (D) and abiraterone (A) and/or enzalutamide (E) [abstract no. 139]. J Clin Oncol. 2015; 33 (Suppl. 7)

  110. Basch EM, Scholz MC, De Bono JS, Vogelzang NJ, De Souza PL, Marx GM et al. Final analysis of COMET-2: Cabozantinib (Cabo) versus mitoxantrone/prednisone (MP) in metastatic castration-resistant prostate cancer (mCRPC) patients (pts) with moderate to severe pain who were previously treated with docetaxel (D) and abiraterone (A) and/or enzalutamide (E) [abstract no. 141]. J Clin Oncol. 2015 ; 33 (Suppl. 7)

  111. Wang X, Huang Y, Christie AL, Bowden M, Lee GM, Kantoff PW, et al. Cabozantinib inhibits abiraterone’s upregulation of IGF-1R phosphorylation and enhances its anti-prostate cancer activity. Clin Cancer Res. 2015;21:5578–87. doi:10.1158/1078-0432.CCR-15-0824.

    Article  CAS  PubMed  Google Scholar 

  112. Varkaris A, Corn PG, Parikh NU, Efstathiou E, Song JH, Lee YC, et al. Integrating murine and clinical trials with cabozantinib to understand roles of MET and VEGFR-2 as targets for growth inhibition of prostate cancer. Clin Cancer Res. 2016;22:107–21. doi:10.1158/1078-0432.CCR-15-0235.

    Article  CAS  PubMed  Google Scholar 

  113. Eswaraka J, Giddabasappa A, Han G, Lalwani K, Eisele K, Feng Z, et al. Axitinib and crizotinib combination therapy inhibits bone loss in a mouse model of castration resistant prostate cancer. BMC Cancer. 2014;14:742. doi:10.1186/1471-2407-14-742.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Morris MJ. Failure of ELM-PC 5: an ineffective drug or an unfit end point? J Clin Oncol. 2015;33(7):679–81. doi:10.1200/JCO.2014.59.4309.

    Article  PubMed  Google Scholar 

  115. Madan RA, Gulley JL. Moving the goal posts in prostate cancer trials. Lancet Oncol. 2015;16(3):247–9. doi:10.1016/S1470-2045(15)70071-9.

    Article  PubMed  Google Scholar 

  116. Di Maio M, Gallo C, De Maio E, Morabito A, Piccirillo MC, Gridelli C, et al. Methodological aspects of lung cancer clinical trials in the era of targeted agents. Lung Cancer. 2010;67(2):127–35. doi:10.1016/j.lungcan.2009.10.001.

    Article  PubMed  Google Scholar 

  117. Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26(7):1148–59. doi:10.1200/JCO.2007.12.4487.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gomella LG, Oliver Sartor A. The current role and limitations of surrogate endpoints in advanced prostate cancer. Urol Oncol. 2014;32(1):28.e1-9. doi:10.1016/j.urolonc.2012.10.001.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Association for Cancer Research (AIRC-IG 11930, AIRC 5 per mille 12214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Massari.

Ethics declarations

Funding

None

Conflict of Interest

AM, FM, CC, MB, MS, RM, GM and GT declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modena, A., Massari, F., Ciccarese, C. et al. Targeting Met and VEGFR Axis in Metastatic Castration-Resistant Prostate Cancer: ‘Game Over’?. Targ Oncol 11, 431–446 (2016). https://doi.org/10.1007/s11523-015-0412-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-015-0412-7

Keywords

Navigation