Skip to main content
Log in

Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Although the epidermal growth factor receptor (EGFR) is overexpressed and/or amplified in more than 50 % of all glioblastomas (GBM), therapeutic targeting of the EGFR has not yet been successful. Since histone deacetylases (HDAC) have been described as controlling EGFR expression, we combined the EGFR tyrosine kinase inhibitor erlotinib with different HDAC inhibitors (HDACi) and investigated the benefit of combinatorial therapy for glioblastoma cells. Using representative models of EGFR-amplified, erlotinib-sensitive and -resistant GBM with or without EGFRvIII expression, we determined proliferation, migration, and EGFR-dependent signaling in response to erlotinib and HDACi alone or in combination. HDACi significantly inhibited proliferation of erlotinib-resistant GBM cells, partially restored their sensitivity to erlotinib, and also significantly reduced proliferation of all treatment-naïve cell lines tested. In combination with erlotinib, the development of resistance was prevented. The multitargeted EGFR/HDAC-inhibitor CUDC-101 exhibited similar effects. However, inhibition of cell migration was only achieved by targeting EGFR, and HDACi exhibited no additive effect. Mechanistically, we identified an HDACi-dependent decrease of EGFR/EGFRvIII protein expression underlying the anti-proliferative effects of HDACi. In conclusion, HDACi in combination with erlotinib might serve as a treatment option for newly diagnosed, treatment-naïve tumors irrespective of their EGFR status, as well as for treatment-refractory, EGFR-overexpressing GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GBM:

Glioblastoma

EGFR:

Epidermal growth factor receptor

HDAC:

Histone deacetylase

HDACi:

Histone deacetylase inhibitor

TKI:

Tyrosine kinase inhibitor

SEM:

Standard error of the mean

References

  1. Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12(9):495–508. doi:10.1038/nrn3060

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  3. Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL, Wikstrand CJ, Van Duyn LB, Dancey JE, McLendon RE, Kao JC, Stenzel TT, Ahmed Rasheed BK, Tourt-Uhlig SE, Herndon JE 2nd, Vredenburgh JJ, Sampson JH, Friedman AH, Bigner DD, Friedman HS (2004) Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22(1):133–142

    Article  CAS  PubMed  Google Scholar 

  4. van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF, Clement PM, Frenay M, Campone M, Baurain JF, Armand JP, Taphoorn MJ, Tosoni A, Kletzl H, Klughammer B, Lacombe D, Gorlia T (2009) Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 27(8):1268–1274

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MC, Delorenzi M, Lambiv WL, Hamou MF, Matter MS, Koch A, Heppner FL, Yonekawa Y, Merlo A, Frei K, Mariani L, Hofer S (2011) Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib—a phase II trial. Mol Cancer Ther 10(6):1102–1112

    Article  CAS  PubMed  Google Scholar 

  6. Lassman AB, Rossi MR, Raizer JJ, Abrey LE, Lieberman FS, Grefe CN, Lamborn K, Pao W, Shih AH, Kuhn JG, Wilson R, Nowak NJ, Cowell JK, DeAngelis LM, Wen P, Gilbert MR, Chang S, Yung WA, Prados M, Holland EC (2005) Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01. Clin Cancer Res 11(21):7841–7850

    Article  CAS  PubMed  Google Scholar 

  7. Steinbach JP, Klumpp A, Wolburg H, Weller M (2004) Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia-induced cell death. Cancer Res 64(5):1575–1578

    Article  CAS  PubMed  Google Scholar 

  8. Addeo R, Zappavigna S, Parlato C, Caraglia M (2014) Erlotinib: early clinical development in brain cancer. Expert Opin Investig Drugs 23(7):1027–1037. doi:10.1517/13543784.2014.918950

    Article  CAS  PubMed  Google Scholar 

  9. Schulte A, Liffers K, Kathagen A, Riethdorf S, Zapf S, Merlo A, Kolbe K, Westphal M, Lamszus K (2013) Erlotinib resistance in EGFR-amplified glioblastoma cells is associated with upregulation of EGFRvIII and PI3Kp110delta. Neuro Oncol 15(10):1289–1301. doi:10.1093/neuonc/not093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong KK, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141(1):69–80. doi:10.1016/j.cell.2010.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim YJ, Greer CB, Cecchini KR, Harris LN, Tuck DP, Kim TH (2013) HDAC inhibitors induce transcriptional repression of high copy number genes in breast cancer through elongation blockade. Oncogene 32(23):2828–2835. doi:10.1038/onc.2013.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Del Vecchio CA, Giacomini CP, Vogel H, Jensen KC, Florio T, Merlo A, Pollack JR, Wong AJ (2013) EGFRvIII gene rearrangement is an early event in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms. Oncogene 32 (21):2670–2681. doi:10.1038/onc.2012.280

    Article  PubMed  Google Scholar 

  13. Humphrey PA, Wong AJ, Vogelstein B, Zalutsky MR, Fuller GN, Archer GE, Friedman HS, Kwatra MM, Bigner SH, Bigner DD (1990) Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci U S A 87(11):4207–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schulte A, Gunther HS, Martens T, Zapf S, Riethdorf S, Wulfing C, Stoupiec M, Westphal M, Lamszus K (2012) Glioblastoma stem-like cell lines with either maintenance or loss of high-level EGFR amplification, generated via modulation of ligand concentration. Clin Cancer Res 18(7):1901–1913. doi:10.1158/1078-0432.CCR-11-3084

    Article  CAS  PubMed  Google Scholar 

  15. Schulte A, Gunther HS, Phillips HS, Kemming D, Martens T, Kharbanda S, Soriano RH, Modrusan Z, Zapf S, Westphal M, Lamszus K (2011) A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia 59(4):590–602. doi:10.1002/glia.21127

    Article  PubMed  Google Scholar 

  16. Mazzoleni S, Politi LS, Pala M, Cominelli M, Franzin A, Sergi Sergi L, Falini A, De Palma M, Bulfone A, Poliani PL, Galli R (2011) Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res 70(19):7500–7513

    Article  Google Scholar 

  17. Jones G, Machado J Jr, Merlo A (2001) Loss of focal adhesion kinase (FAK) inhibits epidermal growth factor receptor-dependent migration and induces aggregation of nh(2)-terminal FAK in the nuclei of apoptotic glioblastoma cells. Cancer Res 61(13):4978–4981

    CAS  PubMed  Google Scholar 

  18. Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61(18):6624–6628

    CAS  PubMed  Google Scholar 

  19. Schulte A, Schulz B, Andrzejewski MG, Hundhausen C, Mletzko S, Achilles J, Reiss K, Paliga K, Weber C, John SR, Ludwig A (2007) Sequential processing of the transmembrane chemokines CX3CL1 and CXCL16 by alpha- and gamma-secretases. Biochem Biophys Res Commun 358(1):233–240

    Article  CAS  PubMed  Google Scholar 

  20. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784. doi:10.1038/nrd2133

    Article  CAS  PubMed  Google Scholar 

  21. Cai X, Zhai HX, Wang J, Forrester J, Qu H, Yin L, Lai CJ, Bao R, Qian C (2010) Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J Med Chem 53(5):2000–2009. doi:10.1021/jm901453q

    Article  CAS  PubMed  Google Scholar 

  22. Lai CJ, Bao R, Tao X, Wang J, Atoyan R, Qu H, Wang DG, Yin L, Samson M, Forrester J, Zifcak B, Xu GX, DellaRocca S, Zhai HX, Cai X, Munger WE, Keegan M, Pepicelli CV, Qian C (2010) CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2, exerts potent anticancer activity. Cancer Res 70(9):3647–3656. doi:10.1158/0008-5472.CAN-09-3360

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Pursell NW, Samson ME, Atoyan R, Ma AW, Selmi A, Xu W, Cai X, Voi M, Savagner P, Lai CJ (2013) Potential advantages of CUDC-101, a multitargeted HDAC, EGFR, and HER2 inhibitor, in treating drug resistance and preventing cancer cell migration and invasion. Mol Cancer Ther 12(6):925–936. doi:10.1158/1535-7163.MCT-12-1045

    Article  CAS  PubMed  Google Scholar 

  24. Lal A, Glazer CA, Martinson HM, Friedman HS, Archer GE, Sampson JH, Riggins GJ (2002) Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res 62(12):3335–3339

    CAS  PubMed  Google Scholar 

  25. Lund-Johansen M, Bjerkvig R, Humphrey PA, Bigner SH, Bigner DD, Laerum OD (1990) Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res 50(18):6039–6044

    CAS  PubMed  Google Scholar 

  26. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353(19):2012–2024

    Article  CAS  PubMed  Google Scholar 

  27. Learn CA, Hartzell TL, Wikstrand CJ, Archer GE, Rich JN, Friedman AH, Friedman HS, Bigner DD, Sampson JH (2004) Resistance to tyrosine kinase inhibition by mutant epidermal growth factor receptor variant III contributes to the neoplastic phenotype of glioblastoma multiforme. Clin Cancer Res 10(9):3216–3224

    Article  CAS  PubMed  Google Scholar 

  28. Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, Eskin A, Hwang K, Wang J, Masui K, Paucar A, Yang H, Ohashi M, Zhu S, Wykosky J, Reed R, Nelson SF, Cloughesy TF, James CD, Rao PN, Kornblum HI, Heath JR, Cavenee WK, Furnari FB, Mischel PS (2014) Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343(6166):72–76. doi:10.1126/science.1241328

    Article  CAS  PubMed  Google Scholar 

  29. Emlet DR, Gupta P, Holgado-Madruga M, Del Vecchio CA, Mitra SS, Han SY, Li G, Jensen KC, Vogel H, Xu LW, Skirboll SS, Wong AJ (2014) Targeting a glioblastoma cancer stem-cell population defined by EGF receptor variant III. Cancer Res 74(4):1238–1249. doi:10.1158/0008-5472.CAN-13-1407

    Article  CAS  PubMed  Google Scholar 

  30. Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Herndon JE 2nd, Lally-Goss D, McGehee-Norman S, Paolino A, Reardon DA, Friedman AH, Friedman HS, Bigner DD (2009) An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 8(10):2773–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reid G, Metivier R, Lin CY, Denger S, Ibberson D, Ivacevic T, Brand H, Benes V, Liu ET, Gannon F (2005) Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24(31):4894–4907. doi:10.1038/sj.onc.1208662

    Article  CAS  PubMed  Google Scholar 

  32. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26(37):5541–5552. doi:10.1038/sj.onc.1210620

    Article  CAS  PubMed  Google Scholar 

  33. Burgess A, Ruefli A, Beamish H, Warrener R, Saunders N, Johnstone R, Gabrielli B (2004) Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene 23(40):6693–6701. doi:10.1038/sj.onc.1207893

    Article  CAS  PubMed  Google Scholar 

  34. Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G, Ngo L, Holmgren A, Jiang X, Marks PA (2005) Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102(3):673–678. doi:10.1073/pnas.0408732102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chou CW, Wu MS, Huang WC, Chen CC (2011) HDAC inhibition decreases the expression of EGFR in colorectal cancer cells. PLoS One 6(3), e18087. doi:10.1371/journal.pone.0018087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, Caballero D, Morschhauser F, Wilhelm M, Pinter-Brown L, Padmanabhan Iyer S, Shustov A, Nielsen T, Nichols J, Wolfson J, Balser B, Horwitz S (2014) Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: pivotal study update demonstrates durable responses. J Hematol Oncol 7(1):11. doi:10.1186/1756-8722-7-11

    Article  PubMed  PubMed Central  Google Scholar 

  37. Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Kim YH (2010) Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol 28(29):4485–4491. doi:10.1200/JCO.2010.28.9066

    Article  CAS  PubMed  Google Scholar 

  38. Iwamoto FM, Lamborn KR, Kuhn JG, Wen PY, Yung WK, Gilbert MR, Chang SM, Lieberman FS, Prados MD, Fine HA (2011) A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03. Neuro Oncol 13(5):509–516. doi:10.1093/neuonc/nor017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Slingerland M, Guchelaar HJ, Gelderblom H (2014) Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors. Anti-Cancer Drugs 25(2):140–149. doi:10.1097/CAD.0000000000000040

    Article  CAS  PubMed  Google Scholar 

  40. Song H, Li CW, Labaff AM, Lim SO, Li LY, Kan SF, Chen Y, Zhang K, Lang J, Xie X, Wang Y, Huo LF, Hsu SC, Chen X, Zhao Y, Hung MC (2011) Acetylation of EGF receptor contributes to tumor cell resistance to histone deacetylase inhibitors. Biochem Biophys Res Commun 404(1):68–73. doi:10.1016/j.bbrc.2010.11.064

    Article  CAS  PubMed  Google Scholar 

  41. Zhou C, Qiu L, Sun Y, Healey S, Wanebo H, Kouttab N, Di W, Yan B, Wan Y (2006) Inhibition of EGFR/PI3K/AKT cell survival pathway promotes TSA's effect on cell death and migration in human ovarian cancer cells. Int J Oncol 29(1):269–278

    CAS  PubMed  Google Scholar 

  42. LaBonte MJ, Wilson PM, Fazzone W, Russell J, Louie SG, El-Khoueiry A, Lenz HJ, Ladner RD (2011) The dual EGFR/HER2 inhibitor lapatinib synergistically enhances the antitumor activity of the histone deacetylase inhibitor panobinostat in colorectal cancer models. Cancer Res 71(10):3635–3648. doi:10.1158/0008-5472.CAN-10-2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Edwards A, Li J, Atadja P, Bhalla K, Haura EB (2007) Effect of the histone deacetylase inhibitor LBH589 against epidermal growth factor receptor-dependent human lung cancer cells. Mol Cancer Ther 6(9):2515–2524. doi:10.1158/1535-7163.MCT-06-0761

    Article  CAS  PubMed  Google Scholar 

  44. Bruzzese F, Leone A, Rocco M, Carbone C, Piro G, Caraglia M, Di Gennaro E, Budillon A (2011) HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT. J Cell Physiol 226(9):2378–2390. doi:10.1002/jcp.22574

    Article  CAS  PubMed  Google Scholar 

  45. Shimizu T, LoRusso PM, Papadopoulos K, Patnaik A, Beeram M, Smith LS, Rasco D, Mays TA, Chambers G, Ma AW, Wang J, Laliberte R, Voi M, Tolcher A (2014) Phase I first-in-human study of CUDC-101, a multi-targeted inhibitor of HDACs, EGFR and HER2 in patients with advanced solid tumors. Clin Cancer Res 20(19):5032–5040. doi:10.1158/1078-0432.CCR-14-0570

    Article  CAS  PubMed  Google Scholar 

  46. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. doi:10.1056/NEJMoa040938

    Article  CAS  PubMed  Google Scholar 

  47. Marie Y, Carpentier AF, Omuro AM, Sanson M, Thillet J, Hoang-Xuan K, Delattre JY (2005) EGFR tyrosine kinase domain mutations in human gliomas. Neurology 64(8):1444–5. doi:10.1212/01.WNL.0000158654.07080.B0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Forschungs- und Wissenschaftsstiftung Hamburg (MW, KL) and the Deutsche Forschungsgemeinschaft (KL, MW, LA1300/4-1). The authors thank Rossella Galli, Istituto Scientifico H. San Raffaele, Milan for providing the cell lines 0306 and 0627.

Conflict of Interest

K Liffers, K Kolbe, M Westphal, K Lamszus, and A Schulte have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schulte.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.00 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liffers, K., Kolbe, K., Westphal, M. et al. Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition. Targ Oncol 11, 29–40 (2016). https://doi.org/10.1007/s11523-015-0372-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-015-0372-y

Keywords

Navigation