Skip to main content
Log in

The Histone Deacetylase Inhibitor Valproic Acid Sensitizes Gemcitabine-Induced Cytotoxicity in Gemcitabine-Resistant Pancreatic Cancer Cells Possibly Through Inhibition of the DNA Repair Protein Gamma-H2AX

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Gemcitabine (GEM) remains a major chemotherapeutic drug for pancreatic cancer, but resistance to GEM has been a big problem, as its response rate has been decreasing year by year.

Methods

The effect of the histone deacetylase inhibitor (HDAI) valproic acid (VPA) was compared with tranilast and RI-1 as a combinatorial treatment with GEM in four pancreatic cancer cell lines, BxPC-3, PK45p, MiaPaCa-2 and PK59. Cell viability assays were carried out to check the cytotoxic effects, western blotting was carried out for DNA repair mechanisms, and localization was determined by immunofluorescence.

Results

The sensitization factors (i.e., the fold ratio of cell viability for GEM/GEM plus drug) reveal that VPA increases the cytotoxic sensitization to GEM at approximately 2.7-fold, 1.2-fold, 1.5-fold and 2.2-fold in BxPC-3, MiaPaCa-2, PK-45p and PK-59 cell lines, respectively. Moreover, GEM induces activation of the DNA repair protein H2AX proportional to the dosage. Interestingly, however, this effect can be abrogated by VPA.

Conclusions

These results indicate that VPA enhances GEM-induced cytotoxicity in GEM-resistant pancreatic cancer cells, possibly through inhibition of DNA damage signaling and repair. Our study suggests VPA as a potential therapeutic agent for combinatorial treatment with GEM in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Mikuria K, Fujimoto M, Maehara S et al (2007) Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int J Oncol 31:1345–50

    CAS  PubMed  Google Scholar 

  2. Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Taba K, Fujimoto M, Okita K et al (2008) A proteomic profiling of gemcitabine resistance in pancreatic cancer cell lines. Mol Med Rep 1:429–34

    CAS  PubMed  Google Scholar 

  3. Taba K, Kuramitsu Y, Ryozawa S, Yoshida K, Tanaka T, Mori-Iwamoto S et al (2011) KNK437 downregulates heat shock protein 27 of pancreatic cancer cells and enhances the cytotoxic effect of gemcitabine. Chemotherapy 57:12–6

    Article  CAS  PubMed  Google Scholar 

  4. Kuramitsu Y, Wang Y, Taba K, Suenaga S, Ryozawa S, Kaino S et al (2012) Heat-shock protein 27 plays the key role in gemcitabine-resistance of pancreatic cancer cells. Anticancer Res 32:2295–9

    CAS  PubMed  Google Scholar 

  5. Baker CH, Banzon J, Bollinger JM, Stubbe J, Samano V, Robins MJ et al (1991) 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J Med Chem 34:1879–84

    Article  CAS  PubMed  Google Scholar 

  6. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W (1991) Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 51:6110–7

    CAS  PubMed  Google Scholar 

  7. Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJ et al (2005) Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol 68:1636–44

    CAS  PubMed  Google Scholar 

  8. Matthews DJ, Yakes FM, Chen J, Tadano M, Bornheim L, Clary DO et al (2007) Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo. Cell Cycle 6:104–10

    Article  CAS  PubMed  Google Scholar 

  9. Parsels LA, Morgan MA, Tanska DM, Parsels JD, Palmer BD, Booth RJ et al (2009) Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther 8:45–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Činčárová L, Zdráhal Z, Fajkus J (2013) New perspectives of valproic acid in clinical practice. Expert Opin Investig Drugs 22:1535–47

    Article  PubMed  Google Scholar 

  11. Rajendran P, Ho E, Williams DE, Dashwood RH (2011) Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 3:4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kachhap SK, Rosmus N, Collis SJ, Kortenhorst MS, Wissing MD, Hedayati M et al (2010) Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor. PLoS One 5, e11208

    Article  PubMed Central  PubMed  Google Scholar 

  13. Chen X, Wong P, Radany E, Wong JY (2009) HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells. Cancer Biother Radiopharm 24:689–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Noguchi H, Yamashita H, Murakami T, Hirai K, Noguchi Y, Maruta J et al (2009) Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery. Endocr J 56:245–9

    Article  PubMed  Google Scholar 

  15. Masoudi A, Elopre M, Amini E, Nagel ME, Ater JL, Gopalakrishnan V et al (2008) Influence of valproic acid on outcome of high-grade gliomas in children. Anticancer Res 28:2437–42

    PubMed  Google Scholar 

  16. Candelaria M, Cetina L, Pérez-Cárdenas E, de la Cruz-Hernández E, González-Fierro A, Trejo-Becerril C et al (2010) Epigenetic therapy and cisplatin chemoradiation in FIGO stage IIIB cervical cancer. Eur J Gynaecol Oncol 31:386–91

    CAS  PubMed  Google Scholar 

  17. Kamrava M, Citrin D, Sproull M, Lita E, Smith S, Sears-Crouse N et al (2008) Acute toxicity in a phase II clinical trial of valproic acid in combination with Temodar and radiation therapy in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 72:S211

    Article  Google Scholar 

  18. Kwan P, Brodie MJ (2001) Effectiveness of first antiepileptic drug. Epilepsia 42(10):1255–60

    Article  CAS  PubMed  Google Scholar 

  19. Meek K, Dang V, Lees-Miller SP (2008) DNA-PK: the means to justify the ends? Adv Immunol 99:33–58

    Article  CAS  PubMed  Google Scholar 

  20. Buisson R, Dion-Côté AM, Coulombe Y, Launay H, Cai H, Stasiak AZ et al (2010) Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 17:1247–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL et al (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420:287–93

    Article  CAS  PubMed  Google Scholar 

  22. Trapp O, Seeliger K, Puchta H (2011) Homologs of breast cancer genes in plants. Front Plant Sci 2:19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sharma A, Singh K, Almasan A (2012) Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol 920:613–26

    Article  CAS  PubMed  Google Scholar 

  24. Cheng YC, Lin H, Huang MJ, Chow JM, Lin S, Liu HE (2007) Downregulation of c-Myc is critical for valproic acid-induced growth arrest and myeloid differentiation of acute myeloid leukemia. Leuk Res 31:1403–11

    Article  CAS  PubMed  Google Scholar 

  25. Schuchmann M, Schulze-Bergkamen H, Fleischer B, Schattenberg JM, Siebler J, Weinmann A et al (2006) Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated apoptosis and chemotherapy. Oncol Rep 15:227–30

    CAS  PubMed  Google Scholar 

  26. Ziauddin MF, Yeow WS, Maxhimer JB, Baras A, Chua A, Reddy RM (2006) Valproic acid, an antiepileptic drug with histone deacetylase inhibitory activity, potentiates the cytotoxic effect of Apo2L/TRAIL on cultured thoracic cancer cells through mitochondria-dependent caspase activation. Neoplasia 8:446–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Greenblatt DY, Cayo MA, Adler JT, Ning L, Haymart MR, Kunnimalaiyaan M et al (2008) Valproic acid activates Notch1 signaling and induces apoptosis in medullary thyroid cancer cells. Ann Surg 247:1036–40

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lampen A, Siehler S, Ellerbeck U, Göttlicher M, Nau H (1999) New molecular bioassays for the estimation of the teratogenic potency of valproic acid derivatives in vitro: activation of the peroxisomal proliferator-activated receptor (PPARdelta). Toxicol Appl Pharmacol 160:238–49

    Article  CAS  PubMed  Google Scholar 

  29. Togi S, Kamitani S, Kawakami S, Ikeda O, Muromoto R, Nanbo A et al (2009) HDAC3 influences phosphorylation of STAT3 at serine 727 by interacting with PP2A. Biochem Biophys Res Commun 379:616–20

    Article  CAS  PubMed  Google Scholar 

  30. Stamatopoulos B, Meuleman N, De Bruyn C, Mineur P, Martiat P, Bron D et al (2009) Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis. Leukemia 23:2281–9

    Article  CAS  PubMed  Google Scholar 

  31. Spiecker M, Lorenz I, Marx N, Darius H (2002) Tranilast inhibits cytokine-induced nuclear factor kappaB activation in vascular endothelial cells. Mol Pharmacol 62:856–63

    Article  CAS  PubMed  Google Scholar 

  32. Nie L, Mogami H, Kanzaki M, Shibata H, Kojima I (1996) Blockade of DNA synthesis induced by platelet-derived growth factor by tranilast, an inhibitor of calcium entry, in vascular smooth muscle cells. Mol Pharmacol 50:763–9

    PubMed  Google Scholar 

  33. Mitsuno M, Kitajima Y, Ohtaka K, Kai K, Hashiguchi K, Nakamura J et al (2010) Tranilast strongly sensitizes pancreatic cancer cells to gemcitabine via decreasing protein expression of ribonucleotide reductase 1. Int J Oncol 36:341–9

    CAS  PubMed  Google Scholar 

  34. Ewald B, Sampath D, Plunkett W (2007) H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther 6:1239–48

    Article  CAS  PubMed  Google Scholar 

  35. Vitale G, Zappavigna S, Marra M, Dicitore A, Meschini S, Condello M et al (2012) The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells. Biotechnol Adv 30:169–84

    Article  CAS  PubMed  Google Scholar 

  36. Mackenzie GG, Huang L, Alston N, Ouyang N, Vrankova K, Mattheolabakis G et al (2013) Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice. PLoS One 8, e61532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Koga H, Selvendiran K, Sivakumar R, Yoshida T, Torimura T, Ueno T et al (2012) PPARγ potentiates anticancer effects of gemcitabine on human pancreatic cancer cells. Int J Oncol 40:679–85

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan (NO. 24501352 to Yasuhiro Kuramitsu). Immunoblot detection by LAS-1000 and plasmid construction were done at the Gene Research Center of Yamaguchi University.

Conflict of Interest

Y. Wang, Y. Kuramitsu, T. Kitagawa, K. Tokuda, B. Baron, J.Akada and K. Nakamura have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kuramitsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Kuramitsu, Y., Kitagawa, T. et al. The Histone Deacetylase Inhibitor Valproic Acid Sensitizes Gemcitabine-Induced Cytotoxicity in Gemcitabine-Resistant Pancreatic Cancer Cells Possibly Through Inhibition of the DNA Repair Protein Gamma-H2AX. Targ Oncol 10, 575–581 (2015). https://doi.org/10.1007/s11523-015-0370-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-015-0370-0

Keywords

Navigation