Skip to main content
Log in

The route to personalized medicine in bladder cancer: where do we stand?

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Recent advances in molecular biology and drug design have described novel targets in bladder cancer. EGFR, fibroblast growth factor receptor (FGFR), VEGFR, phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, PD-1, cyclooxygenase 2 (COX-2), Aurora kinase A, and miRNA are just examples of these opening frontiers. In addition, epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs) are promising candidates for future therapeutic approaches. Novel agents, combination, and sequences are emerging from the 747 clinical studies presently in course in bladder cancer to optimize patient outcomes. This report describes the emerging targets and provides an update on ongoing phase I, II, and III trials and preliminary results on targeted agents, used alone, in sequences, or in combination for patients with bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725

    Article  CAS  PubMed  Google Scholar 

  2. Stoehr R, Zietz S, Burger M, Filbeck T, Denzinger S et al (2005) Deletions of chromosomes 9 and 8p in histologically normal urothelium of patients with bladder cancer. Eur Urol 47:58–63

    Article  CAS  PubMed  Google Scholar 

  3. Iyer G, Al-Ahmadie H, Schultz N, Hanrahan AJ, Ostrovnaya I et al (2013) Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol 31:3133–3140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. AIOM - AIRTUM (2013) I numeri del cancro in Italia 2013. 1st ed. pp 15 - 25. Intermedia Editor: Brescia

  5. Bellmunt J, de Wit R, Albiol S, Tabernero J, Albanell J et al (2003) New drugs and new approaches in metastatic bladder cancer. Crit Rev Oncol Hemathol 47:195–206

    Article  CAS  Google Scholar 

  6. Lipponen P, Eskelinen M (1994) Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br J Cancer 69:1120–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pusztai L, Lewis CE, Lorenzen J, McGee JO (1993) Growth factors: regulation of normal and neoplastic growth. J Pathol 169:191–201

    Article  CAS  PubMed  Google Scholar 

  8. Bellmunt J, Hussain M, Dinney CP (2003) Novel approaches with targeted therapies in bladder cancer therapy of bladder cancer by blockade of the epidermal growth factor receptor family. Crit Rev Oncol Hematol 46:S85–S104

    Article  PubMed  Google Scholar 

  9. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37:S9–S15

    Article  CAS  PubMed  Google Scholar 

  10. Kim WT, Kim J, Yan C, Jeong P, Choi SY et al (2014) S100A9 and EGFR gene signatures predict disease progression in muscle invasive bladder cancer patients after chemotherapy. Ann Oncol 25(5):974–979

    Article  CAS  PubMed  Google Scholar 

  11. Hsieh TF, Chen CC, Ma WL, Chuang WM, Hung XF et al (2013) Epidermal growth factor enhances androgen receptor-mediated bladder cancer progression and invasion via potentiation of AR transactivation. Oncol Rep 30(6):2917–2922

    CAS  PubMed  Google Scholar 

  12. Bellmunt J, Teh BT, Tortora G, Rosenberg JE (2013) Molecular targets on the horizon for kidney and urothelial cancer. Nat Rev Clin Oncol 10:557–570

    Article  CAS  PubMed  Google Scholar 

  13. McConkey DJ, Choi W, Marquis L, Martin F, Williams MB et al (2009) Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 28(3–4):335–344

    Article  CAS  PubMed  Google Scholar 

  14. Adam L, Zhong M, Choi W, Qi W, Nicoloso M et al (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15:5060–5072

    Article  CAS  PubMed  Google Scholar 

  15. Rebouissou S, Bernard-Pierrot I, de Reyniès A, Lepage ML, Krucker C et al (2014) EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med 6:244ra91

    Article  PubMed  CAS  Google Scholar 

  16. Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A et al (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230:1132–1139

    Article  CAS  PubMed  Google Scholar 

  17. Sato K, Moriyama M, Mori S, Saito M, Watanuki T et al (1992) An immunohistologic evaluation of C-erbB-2 gene product in patients with urinary bladder carcinoma. Cancer 70:2493–2498

    Article  CAS  PubMed  Google Scholar 

  18. Gandour-Edwards R, Lara PN Jr, Folkins AK, LaSalle JM, Beckett L et al (2002) Does HER2/neu expression provide prognostic information in patients with advanced urothelial carcinoma? Cancer 95:1009–1015

    Article  CAS  PubMed  Google Scholar 

  19. Wester K, Sjöström A, de la Torre M, Carlsson J, Malmström PU (2002) HER-2: a possible target for therapy of metastatic urinary bladder carcinoma. Acta Oncol 41:282–288

    Article  PubMed  Google Scholar 

  20. Coogan CL, Estrada CR, Kapur S, Bloom KJ (2004) HER-2/neu protein overexpression and gene amplification in human transitional cell carcinoma of the bladder. Urology 63:786–790

    Article  PubMed  Google Scholar 

  21. Laé M, Couturier J, Oudard S, Radvanyi F, Beuzeboc P et al (2010) Assessing HER2 gene amplification as a potential target for therapy in invasive urothelial bladder cancer with a standardized methodology: results in 1005 patients. Ann Oncol 21:815–819

    Article  PubMed Central  PubMed  Google Scholar 

  22. Krüger S, Weitsch G, Büttner H, Matthiensen A, Böhmer T et al (2002) Overexpression of c-erbB-2 oncoprotein in muscle-invasive bladder carcinoma: relationship with gene amplification, clinicopathological parameters and prognostic outcome. Int J Oncol 21:981–987

    PubMed  Google Scholar 

  23. Miyamoto H, Kubota Y, Noguchi S, Takase K, Matsuzaki J et al (2000) C-ERBB-2 gene amplification as a prognostic marker in human bladder cancer. Urology 55:679–683

    Article  CAS  PubMed  Google Scholar 

  24. Fleischmann A, Rotzer D, Seiler R, Studer UE, Thalmann GN (2011) Her2 amplification is significantly more frequent in lymph node metastases from urothelial bladder cancer than in the primary tumours. Eur Urol 60:350–357

    Article  CAS  PubMed  Google Scholar 

  25. Sauter G, Moch H, Moore D, Carroll P, Kerschmann R et al (1993) Heterogeneity of erbB-2 gene amplification in bladder cancer. Cancer Res 53:2199–2203

    CAS  PubMed  Google Scholar 

  26. Lonn U, Lönn S, Friberg S, Nilsson B, Silfverswärd C et al (1995) Prognostic value of amplification of c-erb-B2 in bladder carcinoma. Clin Cancer Res 1:1189–1194

    CAS  PubMed  Google Scholar 

  27. Jimenez RE, Hussain M, Bianco FJ Jr, Vaishampayan U, Tabazcka P et al (2001) Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clin Cancer Res 7:2440–2447

    CAS  PubMed  Google Scholar 

  28. Hussain MH, MacVicar GR, Petrylak DP, Dunn RL, Vaishampayan U et al (2007) Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute Trial. J Clin Oncol 25:2218–2224

    Article  CAS  PubMed  Google Scholar 

  29. Beuzeboc P et al (2007) Trastuzumab (T) combined with standard chemotherapy in HER+ metastatic bladder cancer (BC) patients: interim safety results of a prospective randomized phase II study (abstract). J Clin Oncol 25(Suppl):a15565

    Google Scholar 

  30. Wülfing C, Machiels JP, Richel DJ, Grimm MO, Treiber U et al (2009) A single-arm, multicenter, open-label phase 2 study of lapatinib as the second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma. Cancer 115:2881–2890

    Article  PubMed  CAS  Google Scholar 

  31. Becker MN, Wu KJ, Marlow LA, Kreinest PA, Vonroemeling CA et al (2014) The combination of an mTORc1/TORc2 inhibitor with lapatinib is synergistic in bladder cancer in vitro. Urol Oncol 32(3):317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Böttcher RT, Niehrs C (2005) Fibroblast growth factor signalling during early vertebrate development. Endocr Rev 26(1):63–77

    Article  PubMed  CAS  Google Scholar 

  33. Beenken A, Niehrs C (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8(3):235–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Di Martino E, Tomlinson DC, Knowles MA (2012) A decade of FGF receptor research in bladder cancer: past, present, and future challenges. Adv Urol 2012:429213. doi:10.1155/2012/429213

    Article  PubMed Central  PubMed  Google Scholar 

  35. Tomlinson DC, Baldo O, Harnden P, Knowles MA (2007) FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol 213(1):91–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Cappellen D, De Oliveira C, Ricol D, de Medina S, Bourdin J et al (1999) Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 23(1):18–20

    Article  CAS  PubMed  Google Scholar 

  37. van Rhijn BW, Lurkin I, Radvanyi F, Kirkels WJ, van der Kwast TH et al (2001) The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res 61(4):1265–1268

    PubMed  Google Scholar 

  38. Tomlinson DC, Knowles MA (2010) Altered splicing of FGFR1 is associated with high tumour grade and stage and leads to increased sensitivity to FGF1 in bladder cancer. Am J Pathol 177(5):2379–2386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. van Rhijn BW, van der Kwast TH, Vis AN, Kirkels WJ, Boevé ER et al (2004) FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res 64:1911–1914

    Article  PubMed  Google Scholar 

  40. Burger M, van der Aa MN, van Oers JM, Brinkmann A, van der Kwast TH et al (2008) Prediction of progression of non-muscle-invasive bladder cancer by WHO 1973 and 2004 grading and by FGFR3 mutation status: a prospective study. Eur Urol 54(4):835–843

    Article  PubMed  Google Scholar 

  41. Kompier LC, van der Aa MN, Lurkin I, Vermeij M, Kirkels WJ et al (2009) The development of multiple bladder tumour recurrences in relation to the FGFR3 mutation status of the primary tumour. J Pathol 218:104–112

    Article  CAS  PubMed  Google Scholar 

  42. van Rhijn BW, van der Kwast TH, Liu L, Fleshner NE, Bostrom PJ et al (2012) The FGFR3 mutation is related to favorable pT1 bladder cancer. J Urol 187(1):310–314

    PubMed  Google Scholar 

  43. van Oers JM, Zwarthoff EC, Rehman I, Azzouzi AR, Cussenot O et al (2009) FGFR3 mutations indicate better survival in invasive upper urinary tract and bladder tumours. Eur Urol 55(3):650–657

    Article  PubMed  CAS  Google Scholar 

  44. Tomlinson DC, Lamont FR, Shnyder SD, Knowles MA (2009) Fibroblast growth factor receptor 1 promotes proliferation and survival via activation of the mitogen-activated protein kinase pathway in bladder cancer. Cancer Res 69(11):4613–4620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Das K, Zhao Y, Sugiono M, Lau W, Tan PH et al (2007) Differential expression of vascular endothelial growth factor 165b in transitional cell carcinoma of the bladder. Urol Oncol 25(4):317–321

    Article  CAS  PubMed  Google Scholar 

  46. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803

    Article  CAS  PubMed  Google Scholar 

  47. Crew JP, O'Brien T, Bradburn M, Fuggle S, Bicknell R et al (1997) Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder cancer. Cancer Res 57:5281–5285

    CAS  PubMed  Google Scholar 

  48. Inoue K, Slaton JW, Karashima T, Yoshikawa C, Shuin T et al (2000) The prognostic value of angiogenesis factor expression for predicting recurrence and metastasis of bladder cancer after neoadjuvant chemotherapy and radical cystectomy. Clin Cancer Res 6:4866–4873

    CAS  PubMed  Google Scholar 

  49. Yang CC, Chu KC, Yeh WM (2004) The expression of vascular endothelial growth factor in transitional cell carcinoma of urinary bladder is correlated with cancer progression. Urol Oncol 22:1–6

    Article  PubMed  CAS  Google Scholar 

  50. Donmez G, Sullu Y, Baris S, Yildiz L, Aydin O et al (2009) Vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and trombospondin-1 (TSP-1) expression in urothelial carcinomas. Pathol Res Pract 205:854–857

    Article  CAS  PubMed  Google Scholar 

  51. Urquidi V, Goodison S, Kim J, Chang M, Dai Y et al (2012) Vascular endothelial growth factor, carbonic anhydrase 9, and angiogenin as urinary biomarkers for bladder cancer detection. Urology 79(5):1185.e1-6

    Article  PubMed  Google Scholar 

  52. Crew JP, O'Brien T, Bicknell R, Fuggle S, Cranston D et al (1999) Urinary vascular endothelial growth factor and its correlation with bladder cancer recurrence rates. J Urol 161(3):799–804

    Article  CAS  PubMed  Google Scholar 

  53. Eissa S, Salem AM, Zohny SF, Hegazy MG (2007) The diagnostic efficacy of urinaryy TGF-beta1 and VEGF in bladder cancer: comparison with voided urine cytology. Cancer Biomark 3(6):275–285

    CAS  PubMed  Google Scholar 

  54. Jeon SH, Lee SJ, Chang SG (2001) Clinical significance of urinary vascular endothelial growth factor in patients with superficial bladder tumors. Oncol Rep 8(6):1265–1267

    CAS  PubMed  Google Scholar 

  55. Hahn NM, Stadler WM, Zon RT, Waterhouse D, Picus J et al (2011) Phase II trial of cisplatin, gemcitabine, and bevacizumab as first-line therapy for metastatic urothelial carcinoma: Hoosier Oncology Group GU 04-75. J Clin Oncol 29(12):1525–1530

    Article  CAS  PubMed  Google Scholar 

  56. Kopparapu PK, Boorjian SA, Robinson BD, Downes M, Gudas LJ et al (2013) Expression of VEGF and its receptors VEGFR1/VEGFR2 is associated with invasiveness of bladder cancer. Anticancer Res 33:2381–2390

    CAS  PubMed  Google Scholar 

  57. Xia G, Kumar SR, Hawes D, Cai J, Hassanieh L et al (2006) Expression and significance of vascular endothelial growth factor receptor 2 in bladder cancer. J Urol 175(4):1245–1252

    Article  CAS  PubMed  Google Scholar 

  58. Grivas PD, Daignault S, Tagawa ST, Nanus DM, Stadler WM et al (2014) Double-blind, randomized, phase 2 trial of maintenance sunitinib versus placebo after response to chemotherapy in patients with advanced urothelial carcinoma. Cancer 120(5):692–701

    Article  CAS  PubMed  Google Scholar 

  59. Galsky MD, Hahn NM, Powles T, Hellerstedt BA, Lerner SP et al (2013) Gemcitabine, cisplatin, and sunitinib for metastatic urothelial carcinoma and as preoperative therapy for muscle-invasive bladder cancer. Clin Genitourin Cancer 11(2):175–181

    Article  PubMed  Google Scholar 

  60. Gallagher DJ, Milowsky MI, Gerst SR, Ishill N, Riches J et al (2010) Phase II study of sunitinib in patients with metastatic urothelial cancer. J Clin Oncol 28(8):1373–1379

    Article  CAS  PubMed  Google Scholar 

  61. Dreicer R, Li H, Stein M, DiPaola R, Eleff M et al (2009) Phase 2 trial of sorafenib in patients with advanced urothelial cancer: a trial of the Eastern Cooperative Oncology Group. Cancer 115(18):4090–4095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Sridhar SS, Winquist E, Eisen A, Hotte SJ, McWhirter E et al (2011) A phase II trial of sorafenib in first-line metastatic urothelial cancer: a study of the PMH Phase II Consortium. Invest New Drugs 29(5):1045–1049

    Article  CAS  PubMed  Google Scholar 

  63. Pili R, Qin R, Flynn PJ, Picus J, Millward M et al (2013) A phase II safety and efficacy study of the vascular endothelial growth factor receptor tyrosine kinase inhibitor pazopanib in patients with metastatic urothelial cancer. Clin Genitourin Cancer 11(4):477–483

    Article  PubMed Central  PubMed  Google Scholar 

  64. Santoni M, Amantini C, Morelli MB, Liberati S, Farfariello V et al (2013) Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumour cells. Br J Cancer 109(4):1040–1050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC et al (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87(7):1171–1180

    Article  CAS  PubMed  Google Scholar 

  66. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  CAS  PubMed  Google Scholar 

  67. Oka N, Yamamoto Y, Takahashi M, Nishitani M, Kanayama HO et al (2005) Expression of angiopoietin-1 and -2, and its clinical significance in human bladder cancer. BJU Int 95(4):660–663

    Article  CAS  PubMed  Google Scholar 

  68. Quentin T, Schlott T, Korabiowska M, Käthei N, Zöller G et al (2004) Alteration of the vascular endothelial growth factor and angiopoietins-1 and -2 pathways in transitional cell carcinomas of the urinary bladder associated with tumor progression. Anticancer Res 24:2745–2756

    CAS  PubMed  Google Scholar 

  69. Szarvas T, Jäger T, Tötsch M, vom DF, Kempkensteffen C, et al. (2008) Angiogenic swich of angiopoietinns-Tie2 system and its prognostic value in bladder cancer. Clin Cancer Res 14:8253–8262

  70. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657

    Article  CAS  PubMed  Google Scholar 

  71. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  CAS  PubMed  Google Scholar 

  72. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4:257–262

    Article  CAS  PubMed  Google Scholar 

  73. Ross RL, Askham JM, Knowles MA (2013) PIK3CA mutation spectrum in urothelial carcinoma reflects cell context-dependent signaling and phenotypic outputs. Oncogene 32:768–776

    Article  CAS  PubMed  Google Scholar 

  74. Aveyard JS, Skilleter A, Habuchi T, Knowles MA (1999) Somatic mutation of PTEN in bladder carcinoma. Br J Cancer 80(5/6):904–908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Milowsky MI, Iyer G, Regazzi AM, Al-Ahmadie H, Gerst SR et al (2013) Phase II study of everolimus in metastatic urothelial cancer. BJU Int 112:462–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. O'Neill E, Kolch W (2004) Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer 90:283–288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Storm SM, Cleveland JL, Rapp UR (1990) Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene 5:345–351

    CAS  PubMed  Google Scholar 

  78. Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351:289–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Chong H, Vikis HG, Guan KL (2003) Mechanisms of regulating the Raf kinase family. Cell Signal 15:463–469

    Article  CAS  PubMed  Google Scholar 

  80. Davies H, Bignell GR, Cox C, Stephens P, Edkins S et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  81. Cohen Y, Xing M, Mambo E, Guo Z, Wu G et al (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627

    Article  CAS  PubMed  Google Scholar 

  82. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457

    CAS  PubMed  Google Scholar 

  83. Hertzman Johansson C, Egyhazi Brage S (2014) BRAF inhibitors in cancer therapy. Pharmacol Ther 142:176–182

    Article  CAS  PubMed  Google Scholar 

  84. Karlou M, Saetta AA, Korkolopoulou P, Levidou G, Papanastasiou P, Boltetsou E, Isaiadis D, Pavlopoulos P, Thymara I, Thomas-Tsagli E, Patsouris E (2009) Activation of extracellular regulated kinases (ERK1/2) predicts poor prognosis in urothelial bladder carcinoma and is not associated with B-Raf gene mutations. Pathology 41:327–334

    Article  CAS  PubMed  Google Scholar 

  85. Zaravinos A, Chatziioannou M, Lambrou GI, Boulalas I, Delakas D, Spandidos DA (2011) Implication of RAF and RKIP genes in urinary bladder cancer. Pathol Oncol Res 17:181–190

    Article  CAS  PubMed  Google Scholar 

  86. Boulalas I, Zaravinos A, Karyotis I, Delakas D, Spandidos DA (2009) Activation of RAS family genes in urothelial carcinoma. J Urol 181:2312–2319

    Article  CAS  PubMed  Google Scholar 

  87. Mhawech-Fauceglia P, Fischer G, Beck A, Cheney RT, Herrmann FR (2006) Raf1, Aurora-A/STK15 and E-cadherin biomarkers expression in patients with pTa/pT1 urothelial bladder carcinoma; a retrospective TMA study of 246 patients with long-term follow-up. Eur J Surg Oncol 32:439–444

    Article  CAS  PubMed  Google Scholar 

  88. Simon R, Richter J, Wagner U, Fijan A, Bruderer J et al (2001) High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR1) copy number alterations in urinary bladder cancer. Cancer Res 61:4514–4519

    CAS  PubMed  Google Scholar 

  89. de Martino M, Shariat SF, Hofbauer SL, Lucca I, Taus C, et al. (2014) Aurora A kinase as a diagnostic urinary marker for urothelial bladder cancer. World J Urol

  90. Zhou N, Singh K, Mir MC, Parker Y, Lindner D et al (2013) The investigational Aurora kinase A inhibitor MLN8237 induces defects in cell viability and cell-cycle progression in malignant bladder cancer cells in vitro and in vivo. Clin Cancer Res 19(7):1717–1728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Kamada M, So A, Muramaki M, Rocchi P, Beraldi E et al (2007) Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther 6(1):299–308

    Article  CAS  PubMed  Google Scholar 

  92. Garg M, Kanojia D, Seth A, Kumar R, Gupta A et al (2010) Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associates with tumour progression and promotes migration and invasion. Eur J Cancer 46(1):207–215

    Article  CAS  PubMed  Google Scholar 

  93. Lebret T, Watson RW, Molinié V, O’Neill A, Gabriel C et al (2003) Heat shock proteins HSP27, HSP60, HSP70, and HSP90: expression in bladder carcinoma. Cancer 98:970–977

    Article  CAS  PubMed  Google Scholar 

  94. Ma L, Sato F, Sato R, Matsubara T, Hirai K et al (2014) Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer. Oncol Rep 31(6):2482–2492

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Kawai T, Enomoto Y, Morikawa T, Matsushita H, Kume H et al (2014) High expression of heat shock protein 105 predicts a favorable prognosis for patients with urinary bladder cancer treated with radical cystectomy. Mol Clin Oncol 2:38–42

    PubMed Central  PubMed  Google Scholar 

  96. Cheng L, Davison DD, Adams J, Lopez-Beltran A, Wang L et al (2014) Biomarkers in bladder cancer: translational and clinical implications. Crit Rev Oncol Hematol 89(1):73–111

    Article  PubMed  Google Scholar 

  97. Shimada K, Anai S, Marco DA, Fujimoto K, Konishi N (2011) Cyclooxygenase 2-dependent and independent activation of Akt through casein kinase 2α contributes to human bladder cancer cell survival. BMC Urol 11:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562

    Article  CAS  PubMed  Google Scholar 

  99. Calin GA (2006) MicroRNA signatures in human cancers. Nat Rev 6:857–866

    Article  CAS  Google Scholar 

  100. Zabolotneva AA, Zhavoronkov A, Garazha AV, Roumiantsev SA, Buzdin AA (2013) Characteristic patterns of microRNA expression in human bladder cancer. Front Genet 3(310):1–5

    Google Scholar 

  101. Pignot G, Cizeron-Clairac G, Vacher S, Susini A, Tozlu S et al (2013) microRNA expression profile in a large series of bladder tumors: identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. Int J Cancer 132(11):2479–2491

    Article  CAS  PubMed  Google Scholar 

  102. Catto JW, Miah S, Owen HC, Bryant H, Myers K et al (2009) Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res 69(21):8472–8481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428

    Article  CAS  PubMed  Google Scholar 

  104. McConkey DJ, Choi W, Marquis L, Martin F, Williams MB et al (2009) Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 28:335–344

    Article  CAS  PubMed  Google Scholar 

  105. Rieger-Christ KM, Ng L, Hanley RS, Durrani O, Ma H et al (2005) Restoration of plakoglobin expression in bladder carcinoma cell lines suppresses cell migration and tumorigenic potential. Br J Cancer 92:2153–2159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Gee J et al (1998) Aberrant cadherin expression in bladder carcinoma cells. Mol Urol 2:73–81

    CAS  Google Scholar 

  107. Liang W, Hao Z, Han JL, Zhu DJ, Jin ZF et al (2014) CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition. Urol Oncol. doi:10.1016/j.urolonc.2014.01.005

    Google Scholar 

  108. Jing Y, Cui D, Guo W, Jiang J, Jiang B et al (2014) Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial-mesenchymal transition. Cancer Lett 348(1–2):135–145

    Article  CAS  PubMed  Google Scholar 

  109. Hänze J, Henrici M, Hegele A, Hofmann R, Olbert PJ (2013) Epithelial mesenchymal transition status is associated with anti-cancer responses towards receptor tyrosine-kinase inhibition by dovitinib in human bladder cancer cells. BMC Cancer 13:589

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Baumgart E, Cohen MS, Silva Neto B, Jacobs MA, Wotkowicz C et al (2007) Identification and prognostic significance of an epithelial-mesenchymal transition expression profile in human bladder tumors. Clin Cancer Res 13:1685–1694

    Article  CAS  PubMed  Google Scholar 

  111. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  112. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  CAS  PubMed  Google Scholar 

  113. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  114. Chan KS, Volkmer JP, Weissman I (2010) Cancer stem cells in bladder cancer: a revisited and evolving concept. Curr Opin Urol 20:393–397

    Article  PubMed Central  PubMed  Google Scholar 

  115. Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8(2):97–106

    Article  CAS  PubMed  Google Scholar 

  116. Shin K, Lee J, Guo N, Kim J, Lim A et al (2011) Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472:110–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Brandt WD, Matsui W, Rosenberg JE, He X, Ling S et al (2009) Urothelial carcinoma: stem cells on the edge. Cancer Metastasis Rev 28:291–304

    Article  PubMed Central  PubMed  Google Scholar 

  118. van Tilborg AA, de Vries A, de Bont M, Groenfeld LE, van der Kwast TH et al (2000) Molecular evolution of multiple recurrent cancers of the bladder. Hum Mol Genet 9:2973–2980

    Article  PubMed  Google Scholar 

  119. Gerlinger M, Catto JW, Orntoft TF, Real FX, Zwarthoff EC et al (2014) Intratumour Heterogeneity in urologic cancers: from molecular evidence to clinical implications. Eur Urol. doi:10.1016/j.eururo.2014.04.014

    PubMed Central  Google Scholar 

  120. Kompier LC, van der Aa MN, Lurkin I, Vermeij M, Kirkels WJ et al (2009) The development of multiple bladder tumour recurrences in relation to the FGFR3 mutation status of the primary tumour. J Pathol 218:104–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by a grant of the Italian Association for Cancer Research (AIRC-IG 11930, AIRC 5 per mille 12214)

Conflict of interest

The authors declare to have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Santoni.

Additional information

Francesco Massari and Chiara Ciccarese contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massari, F., Ciccarese, C., Santoni, M. et al. The route to personalized medicine in bladder cancer: where do we stand?. Targ Oncol 10, 325–336 (2015). https://doi.org/10.1007/s11523-015-0357-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-015-0357-x

Keywords

Navigation