Skip to main content
Log in

Panitumumab as a radiosensitizing agent in KRAS wild-type locally advanced rectal cancer

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Our goal was to optimize the radiosensitizing potential of anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, when given concomitantly with preoperative radiotherapy in KRAS wild-type locally advanced rectal cancer (LARC). Based on pre-clinical studies conducted by our group, we designed a phase II trial in which panitumumab (6 mg/kg/q2 weeks) was combined with preoperative radiotherapy (45 Gy in 25 fractions) to treat cT3-4/N + KRAS wild-type LARC. The primary endpoint was complete pathologic response (pCR) (H0 = 5 %, H1 = 17 %, α = 0.05, β = 0.2). From 19 enrolled patients, 17 (89 %) were evaluable for pathology assessment. Although no pCR was observed, seven patients (41 %) had grade 3 Dworak pathological tumor regression. The regimen was safe and was associated with 95 % of sphincter-preservation rate. No NRAS, BRAF, or PI3KCA mutation was found in this study, but one patient (5 %) showed loss of PTEN expression. The quantification of plasma EGFR ligands during treatment showed significant upregulation of plasma TGF-α and EGF following panitumumab administration (p < 0.05). At surgery, patients with important pathological regression (grade 3 Dworak) had higher plasma TGF-α (p = 0.03) but lower plasma EGF (p = 0.003) compared to those with grade 0–2 Dworak. Our study suggests that concomitant panitumumab and preoperative radiotherapy in KRAS wild-type LARC is feasible and results in some tumor regression. However, pCR rate remained modest. Given that the primary endpoint of our study was not reached, we remain unable to recommend the use of panitumumab as a radiosensitizer in KRAS wild-type LARC outside a research setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sauer R, Becker H, Hohenberger W et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 35:1731–1740

    Article  Google Scholar 

  2. Gerard JP, Conroy T, Bonnetain F et al (2006) Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3–4 rectal cancers: results of FFCD 9203. J Clin Oncol 24:4620–4625

    Article  PubMed  Google Scholar 

  3. Bosset JF, Collette L, Calais G et al (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355:1114–1123

    Article  CAS  PubMed  Google Scholar 

  4. Ceelen WP, Van Nieuwenhove Y, Fierens K (2009) Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer. Cochrane Database Syst Rev. doi:10.1002/14651858.CD006041.pub2

    PubMed  Google Scholar 

  5. Bosset J, Calais G, Mineur L et al (2014) Fluorouracil-based adjuvant chemotherapy after peroperative chemoradiotherapy in rectal cancer: long-term results of the EORTC 22921 randomized study. Lancet Oncol 15(2):184–190. doi:10.1016/S1470–2045(13)70599–0

    Article  CAS  PubMed  Google Scholar 

  6. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  CAS  PubMed  Google Scholar 

  7. Van Cutsem E, Peeters M, Siena S et al (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25(13):1658–1664

    Article  PubMed  Google Scholar 

  8. Milas L, Fan Z, Andratschke N, Ang KK (2004) Epidermal growth factor receptor and tumor response to radiation: in vivo preclinical studies. Int J Radiat Oncol Biol Phys 58(3):966–971

    Article  CAS  PubMed  Google Scholar 

  9. Kruser T, Armstrong E, Ghia A et al (2008) Augmentation of radiation response by panitumumab in models of upper aerodigestive tract cancer. Int J Radiat Oncol Biol Phys 72(2):534–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Amgen Inc.: Vectibix (panitumumab) package insert. Revised March 2013. Available at http://pi.amgen.com/united_states/vectibix/vectibix_pi.pdf.

  11. Machiels JP, Sempoux C, Scalliet P et al (2007) Phase I/II study of preoperative cetuximab, capecitabine, and external-beam radiotherapy in patients with rectal cancer. Ann Oncol 18(4):738–744

    Article  PubMed  Google Scholar 

  12. Rödel C, Arnold D, Hipp M et al (2008) Phase I–II trial of cetuximab, capecitabine, oxaliplatin, and radiotherapy as preoperative treatment in rectal cancer. Int J Radiat Oncol Biol Phys 70:1081–1086

    Article  PubMed  Google Scholar 

  13. Bertolini F, Chiara S, Bengala C et al (2009) Neoadjuvant treatment with single-agent cetuximab followed by 5-FU, cetuximab, and pelvic radiotherapy: a phase II study in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 73:466–472

    Article  CAS  PubMed  Google Scholar 

  14. Horisberger K, Treschl A, Mai S et al (2009) Cetuximab in combination with capecitabine, irinotecan, and radiotherapy for patients with locally advanced rectal cancer: results of a Phase II MARGIT trial. Int J Radiat Oncol Biol Phys 74:1487–1493

    Article  CAS  PubMed  Google Scholar 

  15. Peeters M, Douillard JY, Van Cutsem E et al (2013) Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: assessment as prognostic and predictive biomarkers of response to panitumumab. J Clin Oncol 31(6):759–765

    Article  CAS  PubMed  Google Scholar 

  16. Douillard JY, Oliner KS, Siena S et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutation in colorectal cancer. N Engl J Med 369(11):1023–1034

    Article  CAS  PubMed  Google Scholar 

  17. Nyati MK, Morgan MA, Feng FY et al (2006) Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer 6:876–885

    Article  CAS  PubMed  Google Scholar 

  18. Debucquoy A, Machiels JP, McBride WH et al (2010) Integration of epidermal growth factor receptor inhibitors with preoperative chemoradiation. Clin Cancer Res 16(10):2709–2714

    Article  CAS  PubMed  Google Scholar 

  19. Glynne-Jones R, Mawdsley S, Harrison M (2010) Cetuximab and chemoradiation for rectal cancer—is the water getting muddy? Acta Oncol 49(3):278–286

    Article  CAS  PubMed  Google Scholar 

  20. Debucquoy A, Haustermans K, Daemen A et al (2009) Molecular response to cetuximab and efficacy of preoperative cetuximab-based chemoradiation in rectal cancer. J Clin Oncol 27(17):2751–2757

    Article  CAS  PubMed  Google Scholar 

  21. Ahsan A, Hiniker SM, Davis MA et al (2009) Role of cell cycle in epidermal growth factor receptor inhibitor-mediated radiosensitization. Cancer Res 69(12):5108–5114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Dworak O, Keilholz L, Hoffmann A (1997) Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis 12:19–23

    Article  CAS  PubMed  Google Scholar 

  23. Lurkin I, Stoehr R, Hurst CD et al (2010) Two multiplex assays that simultaneously identify 22 possible mutation sites in the KRAS, BRAF, NRAS, and PI3KCA genes. PLoS One 5(1):e8802

    Article  PubMed Central  PubMed  Google Scholar 

  24. Roels S, Duthoy W, Haustermans K et al (2006) Definition and delineation of the clinical target volume for rectal cancer. Int J Radiat Oncol Biol Phys 65(4):1129–1142

    Article  PubMed  Google Scholar 

  25. Demetter P, Vandendael T, Sempoux C et al (2013) Need for objective and reproducible criteria in histopathological assessment of total mesorectal excision specimens: lessons from a national improvement project. Colorectal Dis. doi:10.1111/codi.12362

    PubMed  Google Scholar 

  26. Milas L, Fang FM, Mason KA et al (2007) Importance of maintenance therapy in C225-induced enhancement of tumor control by fractionated radiation. Int J Radiat Oncol Biol Phys 67(2):568–572

    Article  PubMed  Google Scholar 

  27. Pinto C, Di Fabio F, Maiello E et al (2011) Phase II study of panitumumab, oxaliplatin, 5-fluorouracil, and concurrent radiotherapy as preoperative treatment in high-risk locally advanced rectal cancer patients. Ann Oncol 22(11):2424–2430

    Article  CAS  PubMed  Google Scholar 

  28. Helbling D, Bodoky G, Gautschl O et al (2013) Neoadjuvant chemoradiotherapy with or without panitumumab in patients with wild-type KRAS, locally advanced rectal cancer (LARC): a randomised, multicenter, phase II trial SAKK 41/07. Ann Oncol 24:718–725

    Article  CAS  PubMed  Google Scholar 

  29. Gaedcke J, Grade M, Jung K et al (2010) KRAS and BRAF mutations in patients with rectal cancer treated with preoperative chemoradiotherapy. Radiother Oncol 94(1):76–81

    Article  CAS  PubMed  Google Scholar 

  30. Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26(35):5705–5712

    Article  PubMed  Google Scholar 

  31. Mao C, Yang ZY, Hu XF et al (2012) PIK3CA exon 20 mutations as a potential biomarker for resistance to anti-EGFR monoclonal antibodies in KRAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. Ann Oncol 26(6):1518–1525

    Article  Google Scholar 

  32. Hobor S, Van Emburgh BO, Crowley E et al (2014) TGF-α and amphiregulin paracrine network promotes resistance to EGFR blockade in colorectal cancer cells. Clin Cancer Res, Epub June. doi:10.1158/1078-0432.CCR-14-0774, 10

    Google Scholar 

  33. Troiani T, Marinelli E, Napolitano S et al (2013) Increased TGF-α as a mechanism of acquired resistance to the anti-EGFR inhibitor cetuximab through EGFR–MET interaction and activation of MET signaling in colon cancer cells. Clin Cancer Res 19(24):6751–6765

    Article  CAS  PubMed  Google Scholar 

  34. Pajonk F, Vlashi E, McBride WH (2010) Radiation resistance of cancer stem cells: the 4R’s of radiobiology revisited. Stem Cells 28(4):639–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Liu B, Fang M, Lu Y et al (2001) Fibroblast growth factor and insulin-like growth factor differentially modulate the apoptosis and G1 arrest induced by anti-epidermal growth factor receptor monoclonal antibody. Oncogene 20:1913–1922

    Article  CAS  PubMed  Google Scholar 

  36. Liska D, Chen C, Bachleitner-Hofmann T et al (2011) HGF rescues colorectal cancer cells from EGFR inhibition via MET activation. Clin Cancer Res 17(3):472–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Maas M, Nelemans PJ, Valentini V et al (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11:835–844. doi:10.1016/S1470–2045(10)70172–8

    Article  PubMed  Google Scholar 

  38. Tural D, Selcukbiricik F, Dztfcrk MA et al (2013) The relation between pathologic complete response and clinical outcome in patients with rectal cancer. Hepatogastroenterology 60. doi:10.5754/hge13138.

  39. Vignali A, De Nardi P (2014) Multidisciplinary treatment of rectal cancer in 2014: where are we going? World J Gastroenterol 20(32):11249–11261

    Article  PubMed Central  PubMed  Google Scholar 

  40. Swellengrebel HA, Bosch S, Cats A et al (2014) Tumour regression grading after chemoradiotherapy for locally advanced rectal cancer: a near pathologic complete response does not translate into good clinical outcome. Radiother Oncol 112:44–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We deeply acknowledge Jean-Luc Gala, Brigitte Honhon, Yannick Neybuch, Anne-France Dekairelle, Annelies Debucquoy, Aline Gillain, Fatima Hammouch, Janique Dewelle, Pierre Lefesvre, and Marie-Lise Vanderhaeghen for their contributions to this study. We also thank Amgen, Belgium. Finally, we thank Aileen Eiszele, BA (Hons), DipEd, GradDipBus, for editing this manuscript.

Funding

This study was supported by the Fonds de la Recherche Scientifique (FNRS, grant no. 7.4609.09), the Belgian “Plan National Cancer” (Action 29), and an unrestricted grant from Amgen, Belgium. Feby Mardjuadi is supported by the FNRS (Aspirant F.C. 81552). Karin Haustermans is a fundamental clinical researcher of the Research Foundation—Flanders, Belgium.

The preliminary results of this study have been published as an abstract at the American Society of Clinical Oncology 2012 meeting.

Conflicts of interest

Jean-Pascal Machiels received an unrestricted grant from Amgen, Belgium to support the phase II clinical trial. All remaining authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pascal Machiels.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 47783 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardjuadi, F.I., Carrasco, J., Coche, JC. et al. Panitumumab as a radiosensitizing agent in KRAS wild-type locally advanced rectal cancer. Targ Oncol 10, 375–383 (2015). https://doi.org/10.1007/s11523-014-0342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-014-0342-9

Keywords

Navigation