Skip to main content
Log in

Angiogenesis and tumor microenvironment: bevacizumab in the breast cancer model

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Solid tumors require blood vessels for growth, and many new cancer therapies are directed against the tumor vasculature. Antiangiogenic therapies should destroy the tumor vasculature, thereby depriving the tumor of oxygen and nutrients. According to Jain et al., an alternative hypothesis could be that certain antiangiogenic agents can also transiently “normalize” the abnormal structure and function of tumor vasculature to make it more efficient for oxygen and drug delivery. With emphasize on the research works of Jain et al., the aim of this review is to describe the impact of antivascular endothelial growth factor (VEGF) therapy on “pseudo-normalization” of tumor vasculature and tumor microenvironment, its role in early and metastatic breast cancer, and the clinical evidence supporting this original concept. The phase III clinical trials showed that extended tumors, metastatic or locally advanced, are likely to benefit from bevacizumab therapy in combination with chemotherapy, assuming that a high level of tumor neoangiogenesis as in triple-negative tumors is the best target. In adjuvant setting, the lower level of tumor vasculature could mask a potential benefit of anti-VEGF therapy. All these findings highlight the need to identify biomarkers to help in the selection of patients most likely to respond to anti-VEGF therapy, to better understand the mechanism of angiogenesis and of resistance to anti-VEGF therapy according to molecular subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig 2

Similar content being viewed by others

References

  1. Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48:2641–2658

    CAS  PubMed  Google Scholar 

  2. Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D (2003) Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 29:297–307

    Article  CAS  PubMed  Google Scholar 

  3. Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443

    Article  PubMed  Google Scholar 

  4. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    CAS  PubMed  Google Scholar 

  5. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  CAS  PubMed  Google Scholar 

  6. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hashizume H, Baluk P, Morikawa S et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Semenza GL (2010) Oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med 2:336–361

    Article  CAS  PubMed  Google Scholar 

  9. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  10. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20:4368–4380

    Article  CAS  PubMed  Google Scholar 

  11. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  PubMed  Google Scholar 

  12. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835

    Article  CAS  PubMed  Google Scholar 

  13. Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    Article  PubMed  Google Scholar 

  14. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yanagisawa M, Yorozu K, Kurasawa M et al (2010) Bevacizumab improves the delivery and efficacy of paclitaxel. Anticancer Drugs 21:687–694

    CAS  PubMed  Google Scholar 

  17. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Article  CAS  PubMed  Google Scholar 

  18. Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Inai T, Mancuso M, Hashizume H et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736

    Article  CAS  PubMed  Google Scholar 

  21. Greenberg JI, Shields DJ, Barillas SG et al (2008) A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456:809–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    CAS  PubMed  Google Scholar 

  23. Kamoun WS, Chae SS, Lacorre DA et al (2010) Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nat Methods 7:655–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  25. Boucher Y, Jain RK (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 52:5110–5114

    CAS  PubMed  Google Scholar 

  26. Roh HD, Boucher Y, Kalnicki S, Buchsbaum R, Bloomer WD, Jain RK (1991) Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response. Cancer Res 51:6695–6698

    CAS  PubMed  Google Scholar 

  27. Less JR, Posner MC, Boucher Y, Borochovitz D, Wolmark N, Jain RK (1992) Interstitial hypertension in human breast and colorectal tumors. Cancer Res 52:6371–6374

    CAS  PubMed  Google Scholar 

  28. Leunig M, Goetz AE, Dellian M, Zetterer G, Gamarra F, Jain RK, Messmer K (1992) Interstitial fluid pressure in solid tumors following hyperthermia: possible correlation with therapeutic response. Cancer Res 52:487–490

    CAS  PubMed  Google Scholar 

  29. Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK (2004) Pathology: cancer cells compress intratumour vessels. Nature 427:695

    Article  CAS  PubMed  Google Scholar 

  30. Teicher BA, Holden SA, Ara G, Korbut T, Menon K (1996) Comparison of several antiangiogenic regimens alone and with cytotoxic therapies in the Lewis lung carcinoma. Cancer Chemother Pharmacol 38:169–177

    Article  CAS  PubMed  Google Scholar 

  31. Bottsford-Miller JN, Coleman RL, Sood AK (2012) Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J Clin Oncol 30:4026–4034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Uzzan B, Nicolas P, Cucherat M, Perret GY (2004) Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 64:2941–2955

    Article  CAS  PubMed  Google Scholar 

  33. Rau KM, Huang CC, Chiu TJ et al (2012) Neovascularization evaluated by CD105 correlates well with prognostic factors in breast cancers. Exp Ther Med 4:231–236

    PubMed Central  PubMed  Google Scholar 

  34. Tanaka F, Otake Y, Yanagihara K et al (2001) Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clin Cancer Res 7:3410–3415

    CAS  PubMed  Google Scholar 

  35. Fonsatti E, Del Vecchio L, Altomonte M et al (2001) Endoglin: an accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J Cell Physiol 188:1–7

    Article  CAS  PubMed  Google Scholar 

  36. Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, Bundred N (1999) Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res 59:856–861

    CAS  PubMed  Google Scholar 

  37. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  CAS  PubMed  Google Scholar 

  38. Weidner N, Folkman J, Pozza F et al (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887

    Article  CAS  PubMed  Google Scholar 

  39. Gasparini G, Toi M, Gion M et al (1997) Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 89:139–147

    Article  CAS  PubMed  Google Scholar 

  40. Hansen S, Grabau DA, Sørensen FB, Bak M, Vach W, Rose C (2000) The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clin Cancer Res 6:139–146

    CAS  PubMed  Google Scholar 

  41. Kostopoulos I, Arapantoni-Dadioti P, Gogas H et al (2006) Evaluation of the prognostic value of HER-2 and VEGF in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Breast Cancer Res Treat 96:251–261

    Article  CAS  PubMed  Google Scholar 

  42. Manders P, Beex LV, Tjan-Heijnen VC, Geurts-Moespot J, Van Tienoven TH, Foekens JA, Sweep CG (2002) The prognostic value of vascular endothelial growth factor in 574 node-negative breast cancer patients who did not receive adjuvant systemic therapy. Br J Cancer 87:772–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Linderholm B, Bergqvist J, Hellborg H (2009) Shorter survival-times following adjuvant endocrine therapy in oestrogen- and progesterone-receptor positive breast cancer overexpressing HER2 and/or with an increased expression of vascular endothelial growth factor. Med Oncol 26:480–490

    Article  CAS  PubMed  Google Scholar 

  44. Bando H, Weich HA, Brokelmann M, Horiguchi S, Funata N, Ogawa T, Toi M (2005) Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br J Cancer 92:553–561

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Ribeiro-Silva A, Ribeiro do Vale F, Zucoloto S (2006) Vascular endothelial growth factor expression in the basal subtype of breast carcinoma. Am J Clin Pathol 125:512–518

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Tamimi RM, Collins LC, Schnitt SJ, Gilmore HL, Connolly JL, Colditz GA (2011) The association between vascular endothelial growth factor expression in invasive breast cancer and survival varies with intrinsic subtypes and use of adjuvant systemic therapy: results from the nurses’ health study. Breast Cancer Res Treat 129:175–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Nalwoga H, Arnes JB, Stefansson IM, Wabinga H, Foulkes WD, Akslen LA (2011) Vascular proliferation is increased in basal-like breast cancer. Breast Cancer Res Treat 130:1063–1071

    Article  PubMed  Google Scholar 

  48. Linderholm BK, Hellborg H, Johansson U, Elmberger G, Skoog L, Lehtiö J, Lewensohn R (2009) Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. Ann Oncol 20:1639–1646

    Article  CAS  PubMed  Google Scholar 

  49. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  CAS  PubMed  Google Scholar 

  50. Miles DW, Chan A, Dirix LY et al (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28:3239–3247

    Article  CAS  PubMed  Google Scholar 

  51. Robert NJ, Diéras V, Glaspy J et al (2011) RIBBON-1: randomized, double-blind placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29:1252–1260

    Article  CAS  PubMed  Google Scholar 

  52. Rossari JR, Metzger-Filho O, Paesmans M, Saini KS, Gennari A, de Azambuja E, Piccart-Gebhart M (2012) Bevacizumab and breast cancer: a meta-analysis of first-line phase III studies and a critical reappraisal of available evidence. J Oncol 2012:417673

    Article  PubMed Central  PubMed  Google Scholar 

  53. Griffon-Etienne G, Boucher Y, Brekken C, Suit HD, Jain RK (1999) Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res 59:3776–3782

    CAS  PubMed  Google Scholar 

  54. Lang I, Brodowicz T, Ryvo L et al (2013) Bevacizumab plus paclitaxel versus bevacizumab plus capecitabine as first-line treatment for HER2-negative metastatic breast cancer: interim efficacy results of the randomised, open-label, non-inferiority, phase 3 TURANDOT trial. Lancet Oncol 14:125–133

    Article  CAS  PubMed  Google Scholar 

  55. Gianni L, Romieu GH, Lichinitser M et al (2013) AVEREL: a randomized phase III Trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol 31:1719–1725

    Article  CAS  PubMed  Google Scholar 

  56. Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799

    Article  CAS  PubMed  Google Scholar 

  57. Brufsky AM, Hurvitz S, Perez E, Swamy R, Valero V, O’Neill V, Rugo HS (2011) RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 29:4286–4293

    Article  CAS  PubMed  Google Scholar 

  58. Pàez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  PubMed Central  PubMed  Google Scholar 

  59. Miles D, Harbeck N, Escudier B et al (2011) Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J Clin Oncol 29:83–88

    Article  CAS  PubMed  Google Scholar 

  60. Lim E, Vaillant F, Wu D et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913

    Article  CAS  PubMed  Google Scholar 

  61. Charafe-Jauffret E, Monville F, Bertucci F et al (2007) Moesin expression is a marker of basal breast carcinomas. Int J Cancer 121:1779–1785

    Article  CAS  PubMed  Google Scholar 

  62. Foulkes WD, Brunet JS, Stefansson IM et al (2004) The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res 64:830–835

    Article  CAS  PubMed  Google Scholar 

  63. O’Shaughnessy J. Dieras V. Glaspy J et al. (2009) Comparison of subgroup analyses of PFS from three phase III studies of bevacizumab in combination with chemotherapy in patients with HER2-negative metastatic breast cancer (MBC). San Antonio Breast Cancer Symposium: abstract 207

  64. Thomssen C, Pierga JY, Pritchard KI et al (2012) First-line bevacizumab-containing therapy for triple-negative breast cancer: analysis of 585 patients treated in the ATHENA study. Oncology 82:218–227

    Article  CAS  PubMed  Google Scholar 

  65. von Minckwitz G, Eidtmann H, Rezai M et al (2012) Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med 366:299–309

    Article  Google Scholar 

  66. Bear HD, Tang G, Rastogi P et al (2012) Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med 366:310–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Pierga JY, Petit T, Delozier T et al (2012) Neoadjuvant bevacizumab, trastuzumab, and chemotherapy for primary inflammatory HER2-positive breast cancer (BEVERLY-2): an open-label, single-arm phase 2 study. Lancet Oncol 13:375–384

    Article  CAS  PubMed  Google Scholar 

  68. Thukral A, Thomasson DM, Chow CK et al (2007) Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab—initial experience. Radiology 244:727–735

    Article  PubMed  Google Scholar 

  69. Yang SX, Steinberg SM, Nguyen D, Wu TD, Modrusan Z, Swain SM (2008) Gene expression profile and angiogenic marker correlates with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer. Clin Cancer Res 14:5893–5899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Cameron D. Brown J. Dent R et al. (2014) Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol (in press)

  71. Van der Veldt AA, Lubberink M, Bahce I et al (2012) Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21:82–91

    Article  PubMed  Google Scholar 

  72. Heskamp S, Boerman OC, Molkenboer-Kuenen JD, Oyen WJ, van der Graaf WT, van Laarhoven HW (2013) Bevacizumab reduces tumor targeting of antiepidermal growth factor and anti-insulin-like growth factor 1 receptor antibodies. Int J Cancer 133:307–314

    Article  CAS  PubMed  Google Scholar 

  73. Allegra CJ, Yothers G, O’Connell MJ et al (2011) Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol 29:11–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. de Gramont A, Van Cutsem E, Schmoll HJ et al (2012) Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 13:1225–1233

    Article  PubMed  Google Scholar 

  75. Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31:2205–2218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Isabelle Chapelle-Marcillac for her assistance in the medical writing.

Conflict of interest

All the authors received personal fees for the article from Laboratoires Roche France. Laboratoires Roche France supports the medical writing. Olivier Trédan received consulting fees from Roche, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Trédan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trédan, O., Lacroix-Triki, M., Guiu, S. et al. Angiogenesis and tumor microenvironment: bevacizumab in the breast cancer model. Targ Oncol 10, 189–198 (2015). https://doi.org/10.1007/s11523-014-0334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-014-0334-9

Keywords

Navigation