Skip to main content
Log in

Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The ubiquitin (Ub)+proteasome proteolytic pathway is responsible for the selective degradation of the majority of nuclear and cytosolic proteins. The proteasome is a high molecular weight multicatalytic protease that serves as the catalytic core of the complex Ub-dependent protein degradation pathway and is an exciting new target for the development of novel anticancer therapies. Inhibition of the proteasome, and consequently Ub-dependent proteolysis, with the small molecule pharmacologic agent bortezomib led to approval by the US Food and Drug Administration (FDA) for the treatment of multiple myeloma (MM) that has subsequently been extended to other hematologic malignancies. Inhibition of the proteasome results in the intracellular accumulation of many ubiquitinated proteins that control essential cellular functions such as cellular growth and apoptosis. The accumulation of high molecular weight Ub~protein conjugates eventually triggers apoptosis, with tumor cells more susceptible to proteasome inhibition than non-malignant cells. The defined mechanism of action for proteasome inhibitors has not been completely characterized, not all patients respond to proteasome inhibitor-based therapy, and inevitably patients develop resistance to proteasome inhibitors. Further investigation of the Ub+proteasome system (UPS) is needed to develop more effective inhibitors, to develop agents that overcome bortezomib resistance and to avoid adverse effects such as neuropathy. Furthermore, there are newly uncovered pathways, e.g., the SUMOylation and NEDDylation pathways, which similarly attach Ub-like proteins (ULPs) to protein substrates. The functional consequence of these modifications is only beginning to emerge, but these pathways have been linked to tumorigenesis and may similarly provide therapeutic targets. The immunoproteasome is a specialized form of the proteasome that produces peptides that are presented at the cell surface as major histocompatibility complex (MHC) class I antigens. Proteasome inhibitors decrease the presentation of antigenic peptides to reduce tumor cell recognition by cytotoxic T cells (CTLs) but unexpectedly increase tumor cell recognition by natural killer (NK) cells. Inhibitors of the UPS are validated, cytotoxic agents that may be further exploited in immunotherapy since they modulate tumor cell recognition by effectors of the immune system. Targeting the UPS, SUMOylation and NEDDylation pathways offers great promise in the treatment of hematologic and solid malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A, Varshavsky A (2000) Basic Medical Research Award. The ubiquitin system. Nature Med 6:1073–1081

    Article  CAS  PubMed  Google Scholar 

  2. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  3. Ciechanover A (2004) The ubiquitin-proteasome proteolytic pathway. Cell 7;79(1):13–21

    Google Scholar 

  4. Ganoth D, Leshinsky E, Eytan E, Hershko A (1988) A multicomponent system that degrades proteins conjugated to ubiquitin. Resolution of factors and evidence for ATP-dependent complex formation. J Biol Chem 263:12412–12419

    CAS  PubMed  Google Scholar 

  5. Driscoll J, Goldberg AL (1990) The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. J Biol Chem 265:4789–4792

    CAS  PubMed  Google Scholar 

  6. Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7(2):215–223

    Article  CAS  PubMed  Google Scholar 

  7. Hochstrasser M (1996) Protein degradation or regulation: Ub the judge. Cell 84:813–815

    Article  CAS  PubMed  Google Scholar 

  8. Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 10;349(6305):132–138

    Google Scholar 

  9. Hoeller D, Dikic I (2009) Targeting the ubiquitin in cancer therapy. Nature 458:438–444

    Article  CAS  PubMed  Google Scholar 

  10. Bernassola M, Karin M, Ciechanover A, Melino G (2008) The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14:11–21

    Article  Google Scholar 

  11. Ang XI, Harper W (2005) SCF-mediated protein degradation and cell cycle control. Oncogene 24:2860–2870

    Article  CAS  PubMed  Google Scholar 

  12. Crews CM (2003) Feeding the machine: mechanisms of protein catalyzed degradation of ubiquitinated proteins. Curr Op Chem Biol 7:534–539

    Article  CAS  Google Scholar 

  13. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380

    Article  CAS  PubMed  Google Scholar 

  14. Wolf DH, Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochem Biophys Actas 19–31

  15. Orlowski M, Wilk S (2000) Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 383:1–16

    Article  CAS  PubMed  Google Scholar 

  16. Hartmann-Petersen R, Gordon C (2004) Proteins interacting with the 26S proteasome. Cell Mol Life Sci 61:1589–1595

    Article  CAS  PubMed  Google Scholar 

  17. Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archæon T. acidophilum at 3.4 Å resolution. Science 268:533–539

    Article  PubMed  Google Scholar 

  18. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (2007) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471

    Article  Google Scholar 

  19. Groll M, Bajorek M, Köhler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7:1062–1067

    Article  CAS  PubMed  Google Scholar 

  20. Driscoll J, De Chowdhury R, Burris J, Annunziata CM (2010) The expanding role of proteasome-based therapy in the treatment of hematologic malignancies. Open J Hem 1:1–4

    Google Scholar 

  21. Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D et al (1995) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1:221–226

    Article  Google Scholar 

  22. Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R et al (2000) A gated channel into the proteasome coreparticle. Nat Struct Biol 7:1062–1067

    Article  CAS  PubMed  Google Scholar 

  23. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061

    CAS  PubMed  Google Scholar 

  24. Hofmann K, Falquet L (2001) A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 26:347–350

    Article  CAS  PubMed  Google Scholar 

  25. Holzl H, Kapelari B, Kellermann J, Seemuller E, Sumegi M, Udvardy A et al (2000) The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J Cell Biol 150:119–130

    Article  CAS  PubMed  Google Scholar 

  26. Li T, Naqvi NI, Yang H, Teo TS (2000) Identification of a 26S proteasome-associated UCH in fission yeast. Biochem Biophys Res Commun 272:270–275

    Article  CAS  PubMed  Google Scholar 

  27. Wilkinson CR, Wallace M, Seeger M, Dubiel W, Gordon C (2000) Mts4, a non-ATPase subunit of the 26S protease in fission yeast, is essential for mitosis and interacts directly with the ATPase subunit Mts2. J Biol Chem 272:25768–25777

    Article  Google Scholar 

  28. Verma R, Aravind L, Oania R, McDonald WH, Yates JR III, Koonin EV et al (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615

    Article  CAS  PubMed  Google Scholar 

  29. Wilkinson CR, Ferrell K, Penney M, Wallace M, Dubiel W, Gordon C (2000) Analysis of a gene encoding Rpn10 of the fission yeast proteasome reveals that the polyubiquitinbinding site of this subunit is essential when Rpn12/Mts3 activity is compromised. J Biol Chem 275:15182–15192

    Article  CAS  PubMed  Google Scholar 

  30. Hendil KB, Hartmann-Petersen R, Tanaka K (2002) 26S proteasomes function as stable entities. J Mol Biol 315:627–636

    Article  CAS  PubMed  Google Scholar 

  31. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z et al (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623

    Article  CAS  PubMed  Google Scholar 

  32. Kapelari B, Bech-Otschir D, Hegerl R, Schade R, Dumdey R, Dubiel W (2000) Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome. J Mol Biol 300:1169–1178

    Article  CAS  PubMed  Google Scholar 

  33. Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT et al (2002) Multiple associated proteins regulate proteasome structure and function. Mol Cell 10:495–507

    Article  CAS  PubMed  Google Scholar 

  34. Adams J (2002) Proteasome inhibition: a novel approach to cancer therapy. Trends Mol Med 8(4 Suppl):S49–S54

    Article  CAS  PubMed  Google Scholar 

  35. Hideshima T, Richardson P, Chauhan D et al (2002) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61(7):3071–3076

    Google Scholar 

  36. Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99(22):14374–14379

    Article  CAS  PubMed  Google Scholar 

  37. Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:361–373

    Article  CAS  PubMed  Google Scholar 

  38. Raasi S, Wolf DH (2007) Ubiquitin receptors and ERAD: a network of pathways to the proteasome. Semin Cell Dev Biol 18:780–791

    Article  CAS  PubMed  Google Scholar 

  39. Kane RC, Bross PF, Farrell AT, Pazdur R (2003) Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8(6):508–515

    Article  PubMed  Google Scholar 

  40. Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617

    Article  CAS  PubMed  Google Scholar 

  41. Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498

    Article  CAS  PubMed  Google Scholar 

  42. San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359(9):906–917

    Article  CAS  PubMed  Google Scholar 

  43. Richardson PG, Briemberg H, Jagannath S et al (2006) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 24(19):3113–3120

    Article  CAS  PubMed  Google Scholar 

  44. Kupperman et al (2010) Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Can Res 70(5):1970–1980

    Article  Google Scholar 

  45. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S et al (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458:732–736

    Article  CAS  PubMed  Google Scholar 

  46. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  CAS  PubMed  Google Scholar 

  47. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  CAS  PubMed  Google Scholar 

  48. Melchior F, Schergaut M, Pichler A (2008) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci 28:612–618

    Article  Google Scholar 

  49. Kamitani T, Kito K, Nguyen HP, Yeh ET (1997) Characterization of NEDD8, a developmentally down-regulated ubiquitin- like protein. J Biol Chem 272:28557–28562

    Article  CAS  PubMed  Google Scholar 

  50. Muller S, Ledl A, Schmidt D (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23:1998–2008

    Article  PubMed  Google Scholar 

  51. Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4:690–699

    Article  CAS  PubMed  Google Scholar 

  52. Ulrich HD (2008) The fast-growing business of SUMO chains. Mol Cell 32:301–305

    Article  CAS  PubMed  Google Scholar 

  53. Geoffroy MC, Hay RT (2009) An additional role for SUMO in ubiquitin-mediated proteolysis. Nature 10:364–368

    Google Scholar 

  54. Tatham MH et al (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell Biol 10:538–546

    Article  CAS  PubMed  Google Scholar 

  55. Driscoll J, Pelluru D, Lefkimmiatis K et al (2010) The SUMOylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome. Blood 115:2827–2834

    Article  CAS  PubMed  Google Scholar 

  56. Mo Y-Y, Moschos S (2005) Targeting Ubc9 for cancer therapy. Exp Opin Therap Targets 9:1203–1216

    Article  CAS  Google Scholar 

  57. Wu F, Zhu S, Ding Y, Beck WT, Mo YY (2009) MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res 1;15(5):1550–1557

    Google Scholar 

  58. Sun H, Lverson JD, Hunter T (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26:4102–4112

    Article  CAS  PubMed  Google Scholar 

  59. Kosoy A, Calonge TM, Outwin EA, O’Connell MJ (2007) Fission yeast RNF4 homologs are required for DNA repair. J Biol Chem 282:20388–20394

    Article  CAS  PubMed  Google Scholar 

  60. Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, McGowan CH, Boddy MN (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26:4089–4101

    Article  CAS  PubMed  Google Scholar 

  61. Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJ, Dohmen RJ (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282:34167–34175

    Article  CAS  PubMed  Google Scholar 

  62. Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M (2007) The yeast Hex3·Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282:34176–34184

    Article  CAS  PubMed  Google Scholar 

  63. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    Article  CAS  PubMed  Google Scholar 

  64. Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    Article  CAS  PubMed  Google Scholar 

  65. Kloetzel P (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2:179–188

    Article  CAS  PubMed  Google Scholar 

  66. Nencioni A, Schwarzenberg K, Brauer KM, Schmidt SM, Ballestrero A, Grunebach F, Brossart P (2006) Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood 108:551–558

    Article  CAS  PubMed  Google Scholar 

  67. Tseng CW, Monie A, Wu CY, Huang B, Wang MC, Hung CF, Wu TC (2008) Treatment with proteasome inhibitor bortezomib enhances antigen-specific CD8+ T-cell-mediated antitumor immunity induced by DNA vaccination. J Mol Med 86:899–908

    Article  CAS  PubMed  Google Scholar 

  68. Shi J, Tricot GJ, Garg TK, Malaviarachchi PA, Szmania SM, Kellum RE, Storrie B, Mulder A, Shaughnessy JD Jr, Barlogie B et al (2009) Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood 111:1309–1317

    Article  Google Scholar 

  69. Bakker A, Phillips J, Figdor C, Lanier LL (1998) Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, γδT cells, and antigen-specific CTL. J Immunol 160:5239–5245

    CAS  PubMed  Google Scholar 

  70. Lundqvist A, Su S, Rao S, Childs R (2010) Cutting edge: bortezomib-treated tumors sensitized to NK cell apoptosis paradoxically acquire resistance to antigen-specific T cells. J Immunol 184(3):1139–1142

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Driscoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driscoll, J.J., DeChowdhury, R. Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy. Targ Oncol 5, 281–289 (2010). https://doi.org/10.1007/s11523-010-0165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-010-0165-2

Keywords

Navigation