Skip to main content

Advertisement

Log in

Discrimination between emboli and artifacts for outpatient transcranial Doppler ultrasound data

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This paper addresses the detection of emboli in transcranial Doppler ultrasound data acquired from an original portable device. The challenge is the removal of several artifacts (motion and voice) intrinsically related to long-duration (up to 1 h 40 mn per patient) outpatient signals monitoring from this device, as well as high intensities due to the stochastic nature of blood flow. This paper proposes an adapted removal procedure. This firstly consists of reducing the background noise and detecting the blood flow in the time–frequency domain using a likelihood method for contour detection. Then, a hierarchical extraction of features from magnitude and bounding boxes is achieved for the discrimination of emboli and artifacts. After processing of the long-duration outpatient signals, the number of artifacts predicted as emboli is considerably reduced (by 92% for some parameter values) between the first and the last step of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbaspour S, Fallah A (2014) Removing ecg artifact from the surface emg signal using adaptive subtraction technique. J Biomed Phys Eng 4(1):33

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Aydin N, Marvasti F, Markus H (2004) Embolic doppler ultrasound signal detection using discrete wavelet transform. IEEE Trans Inf Tech Biomed 8(2):182–190

    Article  Google Scholar 

  3. Biard M, Kouamé D, Girault JM, Patat F (2003) Discrimination between emboli and artifacts during transcranial doppler. In: Proceedings of the world congress on ultrasonics, société française d’acoustique, WCU. pp 1101–1104

  4. Biard M, Kouamé D, Girault J, Souchon G, Guibert B (2004) Casc : caractrisation du sang circulant. ITBM-RBM 25(5):283–288

    Article  Google Scholar 

  5. Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, ICML ’06. ACM, New York, pp 161–168

  6. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Wang Y (2008) Doppler embolic signal detection using the adaptive wavelet packet basis and neurofuzzy classification. Pattern Recogn Lett 29(10):1589–1595

    Article  Google Scholar 

  8. Chung G, Jeong J, Kwak H, Hwang S (2015) Associations between cerebral embolism and carotid intraplaque hemorrhage during protected carotid artery stenting. Am J Neuroradiol 37(4):686–691

    Article  PubMed  Google Scholar 

  9. Gencer M, Bilgin G, Aydin N (2013) Embolic doppler ultrasound signal detection via fractional fourier transform. In: Engineering in Medicine and Biology Society (EMBC), 35th annual international conference of the IEEE. pp 3050–3053

  10. Girault JM, Zhao Z (2014) Synchronous detector as a new paradigm for automatic microembolus detection. Int J Biomed Eng Technol 14(1):60–70

    Article  Google Scholar 

  11. Huang YM, xin Du S (2005) Weighted support vector machine for classification with uneven training class sizes. In: Proceedings of 2005 international conference on machine learning and cybernetics, vol 7. pp 4365–4369

  12. Karahoca A, Tunga MA (2015) A polynomial based algorithm for detection of embolism. Soft Comput 19(1):167–177

    Article  Google Scholar 

  13. Karahoca A, Kucur T, Aydin N (2007) Data mining usage in emboli detection. In: ECSIS symposium on bio-inspired, learning, and intelligent systems for security, BLISS 2007. pp 159–162

  14. Krongold BS, Sayeed AM, Moehring M, Ritcey J, Spencer MP, Jones DL (1999) Time-scale detection of microemboli in flowing blood with doppler ultrasound. IEEE Trans Biomed Eng 46(9):1081–1089

    Article  CAS  PubMed  Google Scholar 

  15. Marvasti S, Gillies D, Marvasti F, Markus HS (2004) Online automated detection of cerebral embolic signals using a wavelet-based system. Ultrasound Med Biol 30(5):647–653

    Article  PubMed  Google Scholar 

  16. Menigot S, Dreibine L, Meziati N, Girault J (2009) Automatic detection of microemboli by means of a synchronous linear prediction technique. In: Ultrasonics symposium (IUS), 2009 IEEE International. pp 2371–2374

  17. Mercer J (1909) Functions of positive and negative type, and their connection with the theory of integral equations. Philos Trans R Soc Lond 209:415–446

    Article  Google Scholar 

  18. Millioz F, Martin N (2010) Estimation of a white Gaussian noise in the short time Fourier transform based on the spectral kurtosis of the minimal statistics: application to underwater noise. In: IEEE international conference on acoustics speech and signal processing (ICASSP). pp 5638–5641

  19. Millioz F, Martin N (2011) Circularity of the stft and spectral kurtosis for time-frequency segmentation in Gaussian environment. IEEE Trans Signal Process 59(2):515–524

    Article  Google Scholar 

  20. Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  21. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  Google Scholar 

  22. Paschoal FM, de Almeida Lins Ronconi K, de Lima Oliveira M, Nogueira RdC, Paschoal EHA, Teixeira MJ, Figueiredo EG, Bor-Seng-Shu E (2015) Embolic signals during routine transcranial doppler ultrasonography in aneurysmal subarachnoid hemorrhage. BioMed research international 2015

  23. Sarti A, Corsi C, Mazzini E, Lamberti C (2005) Maximum likelihood segmentation of ultrasound images with rayleigh distribution. IEEE Trans Ultrason Ferroelectr Freq Control 52(6):947–960

    Article  PubMed  Google Scholar 

  24. Sciolla B, Ceccato P, Dambry T, Guibert B, Delachartre P (2015) A comparison of non-parametric segmentation methods. In: GRETSI, Lyon. https://hal.archives-ouvertes.fr/hal-01307318

  25. Serbes G, Aydin N (2014) Denoising performance of modified dual-tree complex wavelet transform for processing quadrature embolic doppler signals. Med Biol Eng Comput 52(1):29–43

    Article  PubMed  Google Scholar 

  26. Smith J, Evans D, Fan L, Bell P, Naylor A (1996) Differentiation between emboli and artefacts using dual-gated transcranial doppler ultrasound. Ultrasound Med Biol 22(8):1031–1036

    Article  CAS  PubMed  Google Scholar 

  27. Sweeney KT, Ayaz H, Ward TE, Izzetoglu M, McLoone SF, Onaral B (2012) A methodology for validating artifact removal techniques for physiological signals. IEEE Trans Inf Technol Biomed 16(5):918–926

    Article  PubMed  Google Scholar 

  28. Wallace S, Døhlen G, Holmstrøm H, Lund C, Russell D (2015) Cerebral microemboli detection and differentiation during transcatheter closure of atrial septal defect in a paediatric population. Cardiol Young 25:237–244

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the ANR-13-LAB3-0006-01 LabCom AtysCrea and was supported by the LABEX CELYA (ANR-10-LABX-0060) and PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaise Kévin Guépié.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guépié, B.K., Sciolla, B., Millioz, F. et al. Discrimination between emboli and artifacts for outpatient transcranial Doppler ultrasound data. Med Biol Eng Comput 55, 1787–1797 (2017). https://doi.org/10.1007/s11517-017-1624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1624-z

Keywords

Navigation