Skip to main content
Log in

Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Tissue electrical conductivity is correlated with tissue characteristics. In this work, some soft tissue sarcomas (STS) excised from patients have been evaluated in terms of histological characteristics (cell size and density) and electrical resistance. The electrical resistance has been measured using the ex vivo study on soft tissue tumors electrical characteristics (ESTTE) protocol proposed by the authors in order to study electrical resistance of surgical samples excised by patients in a fixed measurement setup. The measurement setup includes a voltage pulse generator (700 V, 100 µs long at 5 kHz, period 200 µs) and an electrode with 7 needles, 20 mm-long, with the same distance arranged in a fixed hexagonal geometry. In the ESTTE protocol, the same voltage pulse sequence is applied to each different tumor mass and the corresponding resistance has been evaluated from voltage and current recorded by the equipment. For each tumor mass, a histological sample of the volume treated by means of voltage pulses has been taken for histological analysis. Each mass has been studied in order to identify the sarcoma type. For each histological sample, an image at 20× or 40× of magnification was acquired. In this work, the electrical resistance measured for each tumor has been correlated with tissue characteristics like the type, size and density of cells. This work presents a preliminary study to explore possible correlations between tissue characteristics and electrical resistance of STS. These results can be helpful to adjust the pulse voltage intensity in order to improve the electrochemotherapy efficacy on some histotype of STS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mir LM, Orlowski S (1999) Mechanisms of electrochemotherapy. Enhanc Drug Deliv Using High Volt Pulses 35:107–118. doi:10.1016/S0169-409X(98)00066-0

    CAS  Google Scholar 

  2. Mir LM, Gehl J, Sersa G et al (2006) Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. Eur J Cancer Suppl 4:14–25

    Article  CAS  Google Scholar 

  3. Marty M, Sersa G, Garbay JR et al (2006) Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Suppl 4:3–13. doi:10.1016/j.ejcsup.2006.08.002

    Article  CAS  Google Scholar 

  4. Campana L, Mocellin S, Basso M et al (2009) Bleomycin-based electrochemotherapy: clinical outcome from a single institution’s experience with 52 patients. Ann Surg Oncol 16:191–199. doi:10.1245/s10434-008-0204-8

    Article  PubMed  Google Scholar 

  5. Campana L, Valpione S, Falci C et al (2012) The activity and safety of electrochemotherapy in persistent chest wall recurrence from breast cancer after mastectomy: a phase-II study. Breast Cancer Res Treat 134:1169–1178. doi:10.1007/s10549-012-2095-4

    Article  CAS  PubMed  Google Scholar 

  6. Sersa G, Cufer T, Paulin SM et al (2012) Electrochemotherapy of chest wall breast cancer recurrence. Cancer Treat Rev. doi:10.1016/j.ctrv.2011.07.006

    PubMed  Google Scholar 

  7. Sersa G, Miklavcic D, Cemazar M et al (2008) Electrochemotherapy in treatment of tumours. Eur J Surg Oncol EJSO 34:232–240. doi:10.1016/j.ejso.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  8. Girelli R, Prejanò S, Cataldo I et al (2015) Feasibility and safety of electrochemotherapy (ECT) in the pancreas: a pre-clinical investigation. Radiol Oncol 49:147–154. doi:10.1515/raon-2015-0013

    Article  PubMed  PubMed Central  Google Scholar 

  9. Edhemovic I, Brecelj E, Gasljevic G et al (2014) Intraoperative electrochemotherapy of colorectal liver metastases. J Surg Oncol 110:320–327. doi:10.1002/jso.23625

    Article  PubMed  Google Scholar 

  10. Mahmood F, Gehl J (2011) Optimizing clinical performance and geometrical robustness of a new electrode device for intracranial tumor electroporation. Bioelectrochemistry 81:10–16. doi:10.1016/j.bioelechem.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Campana L, Bianchi G, Mocellin S et al (2014) Electrochemotherapy treatment of locally advanced and metastatic soft tissue sarcomas: results of a non-comparative phase II study. World J Surg 813–822:813–822. doi:10.1007/s00268-013-2321-1

    Article  Google Scholar 

  12. Miklavčič D, Serša G, Brecelj E et al (2012) Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 50:1213–1225. doi:10.1007/s11517-012-0991-8

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miklavcic D, Snoj M, Zupanic A et al (2010) Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng Online 9:10. doi:10.1186/1475-925X-9-10

    Article  PubMed  PubMed Central  Google Scholar 

  14. World Health Organization, International Agency for Research on Cancer (2013) WHO classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon

    Google Scholar 

  15. Campana LG, Cesari M, Dughiero F et al (2015) Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens. Med Biol Eng Comput. doi:10.1007/s11517-015-1368-6

    PubMed  Google Scholar 

  16. Campana L, Dughiero F, Forzan M et al (2015) Electrical resistance of tumor tissue during electroporation: an ex-vivo study on human lipomatous tumors. In: Lacković I, Vasic D (eds) European conference of the international federation for medical and biological engineering, vol 6. Springer International Publishing, New York, pp 569–572

    Google Scholar 

  17. Tosi AL, Campana LG, Dughiero F et al (2016) Histological characteristics of soft tissue sarcomas correlated to electrical resistance. In: Jarm T, Kramar P (eds) 1st world congress on electroporation and pulsed electric fields in biology, medicine and food & environmental technologies. Springer, Singapore, pp 290–293

    Chapter  Google Scholar 

  18. IFAC-CNR www.ifac.cnr.it

  19. Andreuccetti D, Fossi R (2000) Dielectric properties of human tissues: definitions, parametric model, computing codes IROE Technical report N.TR/ICEMM/13.00. http://niremf.ifac.cnr.it/tissprop/document/tissprop.pdf

  20. Hasgall PA, Di Gennaro F, Neufeld E, et al (2015) IT’IS Database for thermal and electromagnetic parameters of biological tissues. www.itis.ethz.ch/database.

  21. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249. doi:10.1088/0031-9155/41/11/001

    Article  CAS  PubMed  Google Scholar 

  22. Gabriel S, Laul RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  CAS  PubMed  Google Scholar 

  23. Gabriel S, Laul RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  CAS  PubMed  Google Scholar 

  24. Miklavčič D, Pavšelj N, Hart FX (2006) Electric properties of tissues. Wiley Encycl Biomed Eng. doi:10.1002/9780471740360.ebs0403

  25. Pliquett U (2015) Electrical characterization in time domain—Sample rate and adc precision. In: Lacković I, Vasic D (eds) European conference of the international federation for medical and biological engineering, vol 6. Springer International Publishing, New York, pp 854–857

    Google Scholar 

  26. Ramos A, Schneider ALS, Suzuki DOH, Marques JLB (2012) Sinusoidal signal analysis of electroporation in biological cells. IEEE Trans Biomed Eng 59:2965–2973. doi:10.1109/TBME.2012.2212896

    Article  PubMed  Google Scholar 

  27. Ramos A, Suzuki DOH, Marques JLB (2006) Numerical study of the electrical conductivity and polarization in a suspension of spherical cells. Bioelectrochemistry Amst Neth 68:213–217. doi:10.1016/j.bioelechem.2005.08.001

    Article  CAS  Google Scholar 

  28. Arena CB, Sano MB, Rossmeisl JH et al (2011) High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng Online 10:102. doi:10.1186/1475-925X-10-102

    Article  PubMed  PubMed Central  Google Scholar 

  29. Garcia PA, Rossmeisl JH, Robertson J et al (2009) Pilot study of irreversible electroporation for intracranial surgery. Int Conf Proc Annu Conf IEEE Eng Med Biol Soc 2009:6513–6516. doi:10.1109/IEMBS.2009.5333141

    Google Scholar 

  30. Garcia PA, Rossmeisl JH, Neal RE et al (2010) Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol 236:127–136. doi:10.1007/s00232-010-9284-z

    Article  CAS  PubMed  Google Scholar 

  31. Onik G, Mikus P, Rubinsky B (2007) Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat 6:295–300. doi:10.1177/153303460700600405

    Article  PubMed  Google Scholar 

  32. Pavselj N, Miklavcic D (2008) Numerical models of skin electropermeabilization taking into account conductivity changes and the presence of local transport regions. IEEE Trans Plasma Sci 36:1650–1658

    Article  Google Scholar 

  33. Čorović S, Županič A, Kranjc S et al (2010) The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Med Biol Eng Comput 48:637–648. doi:10.1007/s11517-010-0614-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ivorra Antoni, Al-Sakere Bassim, Rubinsky Boris, Mir Lluis M (2009) In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys Med Biol 54:5949

    Article  PubMed  Google Scholar 

  35. Pliquett U, Langer R, Weaver JC (1995) Changes in the passive electrical properties of human stratum corneum due to electroporation. Biochim Biophys Acta BBA Biomembr 1239:111–121. doi:10.1016/0005-2736(95)00139-T

    Article  CAS  Google Scholar 

  36. Laufer Shlomi, Ivorra Antoni, Reuter Victor E, Rubinsky Boris, Solomon Stephen B (2010) Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol Meas 31:995

    Article  PubMed  Google Scholar 

  37. Sel D, Cukjati D, Batiuskaite D et al (2005) Sequential finite element model of tissue electropermeabilization. IEEE Trans Biomed Eng 52:816–827. doi:10.1109/TBME.2005.845212

    Article  PubMed  Google Scholar 

  38. Pavlin M, Kandušer M, Reberšek M et al (2005) Effect of cell electroporation on the conductivity of a cell suspension. Biophys J 88:4378–4390. doi:10.1529/biophysj.104.048975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davalos RV, Rubinsky B, Otten DM (2002) A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Trans Biomed Eng 49:400–403. doi:10.1109/10.991168

    Article  PubMed  Google Scholar 

  40. García-Sánchez T, Sanchez B, Gomez-Foix A, Bragós R (2015) Electrical impedance measurements on electropermeabilized cells attached to microelectrodes. In: Lacković I, Vasic D (eds) European conference of the international federation for medical and biological engineering, vol 6. Springer International Publishing, New York City, pp 553–556

    Google Scholar 

  41. Laufer Shlomi, Solomon Stephen B, Rubinsky Boris (2012) Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach. Physiol Meas 33:997

    Article  PubMed  Google Scholar 

  42. Kranjc M, Markelc B, Bajd F et al (2014) In situ monitoring of electric field distribution in mouse tumor during electroporation. Radiology 140311:115–123. doi:10.1148/radiol.14140311

    Google Scholar 

  43. Edd JF, Horowitz L, Davalos RV et al (2006) In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 53:1409–1415. doi:10.1109/TBME.2006.873745

    Article  PubMed  Google Scholar 

  44. Rossmeisl JH, Garcia PA, Roberston JL et al (2013) Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain. J Vet Sci 14:433. doi:10.4142/jvs.2013.14.4.433

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ivorra A, Villemejane J, Mir LM (2010) Electrical modeling of the influence of medium conductivity on electroporation. Phys Chem Chem Phys PCCP 12:10055–10064. doi:10.1039/c004419a

    Article  CAS  PubMed  Google Scholar 

  46. Casciola M, Bonhenry D, Liberti M et al (2014) A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry Amst Neth 100:11–17. doi:10.1016/j.bioelechem.2014.03.009

    Article  CAS  Google Scholar 

  47. Pakhomov A (2010) Advanced electroporation techniques in biology and medicine. CRC Press, Boca Raton

    Google Scholar 

  48. Santini MT, Rainaldi G, Romano R et al (2004) MG-63 human osteosarcoma cells grown in monolayer and as three-dimensional tumor spheroids present a different metabolic profile: a 1H NMR study. FEBS Lett 557:148–154. doi:10.1016/S0014-5793(03)01466-2

    Article  CAS  PubMed  Google Scholar 

  49. Pavlin M, Pavselj N, Miklavcic D (2002) Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans Biomed Eng 49:605–612. doi:10.1109/TBME.2002.1001975

    Article  PubMed  Google Scholar 

  50. Mir LM (2001) Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53:1–10. doi:10.1016/S0302-4598(00)00112-4

    Article  CAS  PubMed  Google Scholar 

  51. Ramos A (2005) Effect of the electroporation in the field calculation in biological tissues. Artif Organs 29:510–513. doi:10.1111/j.1525-1594.2005.29085.x

    Article  PubMed  Google Scholar 

  52. Campana LG, Cesari M, Dughiero F et al (2016) Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens. Med Biol Eng Comput 54:773–787. doi:10.1007/s11517-015-1368-6

    Article  CAS  PubMed  Google Scholar 

  53. IGEA. http://www.igeamedical.com/. Accessed 15 Apr 2014

  54. Bertacchini C, Margotti PM, Bergamini E et al (2007) Design of an irreversible electroporation system for clinical use. Technol Cancer Res Treat 6:313–320

    Article  PubMed  Google Scholar 

  55. Dermol J, Miklavčič D (2014) Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination. Bioelectrochemistry 100:52–61. doi:10.1016/j.bioelechem.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  56. Young B, O’Dowd G, Woodford P (2014) Wheater’s functional histology: a text and colour atlas, 6th edn. Churchill Livingston/Elsevier, Philadelphia, PA

    Google Scholar 

  57. Monesi V, Adamo S (2012) Istologia. Piccin, Padova

    Google Scholar 

Download references

Acknowledgments

The research was partially made possible thanks to the networking COST TD1104 action (www.electroporation.net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sieni.

Glossary of terms

ECT

Eletrochemiotherapy

STS

Soft tissue sarcomas

ESTTE

Ex vivo study on soft tissue tumors electrical characteristics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosi, A.L., Campana, L.G., Dughiero, F. et al. Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance. Med Biol Eng Comput 55, 1097–1108 (2017). https://doi.org/10.1007/s11517-016-1573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1573-y

Keywords

Navigation