Skip to main content

Advertisement

Log in

Number of pegs influence focal stress distributions and micromotion in glenoid implants: a finite element study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The present study was conducted to compare the stability of four commercially available implants by investigating the focal stress distributions and relative micromotion using finite element analysis. Variations in the numbers of pegs between the implant designs were tested. A load of 750 N was applied at three different glenoid positions (SA: superior–anterior; SP: superior–posterior; C: central) to mimic off-center and central loadings during activities of daily living. Focal stress distributions and relative micromotion were measured using Marc Mentat software. The results demonstrated that by increasing the number of pegs from two to five, the total focal stress volumes exceeding 5 MPa, reflecting the stress critical volume (SCV) as the threshold for occurrence of cement microfractures, decreased from 8.41 to 5.21 % in the SA position and from 9.59 to 6.69 % in the SP position. However, in the C position, this change in peg number increased the SCV from 1.37 to 5.86 %. Meanwhile, micromotion appeared to remain within 19–25 µm irrespective of the number of pegs used. In conclusion, four-peg glenoid implants provide the best configuration because they had lower SCV values compared with lesser-peg implants, preserved more bone stock, and reduced PMMA cement usage compared with five-peg implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anglin C, Wyss UP, Nyffeler RW, Gerber C (2001) Loosening performance of cemented glenoid prosthesis design pairs. Clin Biomech 16:144–150. doi:10.1016/s0268-0033(00)00078-4

    Article  CAS  Google Scholar 

  2. Anglin C, Wyss UP, Pichora DR (2000) Mechanical testing of shoulder prostheses and recommendations for glenoid design. J Shoulder Elbow Surg 9:323–331. doi:10.1067/mse.2000.105451

    Article  CAS  PubMed  Google Scholar 

  3. Bohsali KI, Wirth MA, Rockwood CA Jr (2006) Complications of total shoulder arthroplasty. J Bone Joint Surg Am 88:2279–2292. doi:10.2106/jbjs.f.00125

    PubMed  Google Scholar 

  4. Bolsterlee B, Veeger DHEJ, Chadwick EK (2013) Clinical applications of musculoskeletal modelling for the shoulder and upper limb. Med Biol Eng Comput 51:953–963. doi:10.1007/s11517-013-1099-5

    Article  PubMed  Google Scholar 

  5. Couteau B, Mansat P, Estivalèzes É, Darmana R, Mansat M, Egan J (2001) Finite element analysis of the mechanical behavior of a scapula implanted with a glenoid prosthesis. Clin Biomech 16:566–575. doi:10.1016/s0268-0033(01)00029-8

    Article  CAS  Google Scholar 

  6. Edwards TB, Labriola JE, Stanley RJ, O’Connor DP, Elkousy HA, Gartsman GM (2010) Radiographic comparison of pegged and keeled glenoid components using modern cementing techniques: a prospective randomized study. J Shoulder Elbow Surg 19:251–257. doi:10.1016/j.jse.2009.10.013

    Article  PubMed  Google Scholar 

  7. Gartsman GM, Elkousy HA, Warnock KM, Edwards TB, O’Connor DP (2005) Radiographic comparison of pegged and keeled glenoid components. J Shoulder Elbow Surg 14:252–257. doi:10.1016/j.jse.2004.09.006

    Article  PubMed  Google Scholar 

  8. Gonzalez J-F, Alami GB, Baque F, Walch G, Boileau P (2011) Complications of unconstrained shoulder prostheses. J Shoulder Elbow Surg 20:666–682. doi:10.1016/j.jse.2010.11.017

    Article  PubMed  Google Scholar 

  9. Hasan SS, Leith JM, Campbell B, Kapil R, Smith KL, Matsen Iii FA (2002) Characteristics of unsatisfactory shoulder arthroplasties. J Shoulder Elbow Surg 11:431–441. doi:10.1067/mse.2002.125806

    Article  PubMed  Google Scholar 

  10. Hermida JC, Flores-Hernandez C, Hoenecke HR, D’Lima DD (2014) Augmented wedge-shaped glenoid component for the correction of glenoid retroversion: a finite element analysis. J Shoulder Elbow Surg 23:347–354. doi:10.1016/j.jse.2013.06.008

    Article  PubMed  Google Scholar 

  11. Hsu JE, Ricchetti ET, Huffman GR, Iannotti JP, Glaser DL (2013) Addressing glenoid bone deficiency and asymmetric posterior erosion in shoulder arthroplasty. J Shoulder Elbow Surg 22:1298–1308. doi:10.1016/j.jse.2013.04.014

    Article  PubMed  Google Scholar 

  12. Iannotti JP, Greeson C, Downing D, Sabesan V, Bryan JA (2012) Effect of glenoid deformity on glenoid component placement in primary shoulder arthroplasty. J Shoulder Elbow Surg 21:48–55. doi:10.1016/j.jse.2011.02.011

    Article  PubMed  Google Scholar 

  13. Iannotti JP, Lappin KE, Klotz CL, Reber EW, Swope SW (2013) Liftoff resistance of augmented glenoid components during cyclic fatigue loading in the posterior–superior direction. J Shoulder Elbow Surg 22:1530–1536. doi:10.1016/j.jse.2013.01.018

    Article  PubMed  Google Scholar 

  14. Lacroix D, Murphy LA, Prendergast PJ (2000) Three-dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems. J Biomech Eng 122:430–436

    Article  CAS  PubMed  Google Scholar 

  15. Lazarus MD, Jensen KL, Southworth C, Matsen FA 3rd (2002) The radiographic evaluation of keeled and pegged glenoid component insertion. J Bone Joint Surg Am 84-A:1174–1182

    Article  PubMed  Google Scholar 

  16. Mansat P, Briot J, Mansat M, Swider P (2007) Evaluation of the glenoid implant survival using a biomechanical finite element analysis: influence of the implant design, bone properties, and loading location. J Shoulder Elbow Surg 16:S79–S83. doi:10.1016/j.jse.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  17. Martens KA, Edwards SL, Omar IM, Saltzman MD (2012) Heat generated with pegged or keeled glenoid components fixed with defined amounts of cement. Orthopedics 35:e469–e473. doi:10.3928/01477447-20120327-14

    Article  PubMed  Google Scholar 

  18. Nuttall D, Haines JF, Trail II (2007) A study of the micromovement of pegged and keeled glenoid components compared using radiostereometric analysis. J Shoulder Elbow Surg 16:S65–S70. doi:10.1016/j.jse.2006.01.015

    Article  PubMed  Google Scholar 

  19. Pomwenger W, Entacher K, Resch H, Schuller-Götzburg P (2015) Multi-patient finite element simulation of keeled versus pegged glenoid implant designs in shoulder arthroplasty. Med Biol Eng Comput 53:781–790. doi:10.1007/s11517-015-1286-7

    Article  PubMed  Google Scholar 

  20. Purdue PE, Koulouvaris P, Nestor BJ, Sculco TP (2006) The central role of wear debris in periprosthetic osteolysis. HSS J 2:102–113

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rahme H, Mattsson P, Wikblad L, Nowak J, Larsson S (2009) Stability of cemented in-line pegged glenoid compared with keeled glenoid components in total shoulder arthroplasty. J Bone Joint Surg Am 91:1965–1972. doi:10.2106/jbjs.h.00938

    Article  PubMed  Google Scholar 

  22. Ramamurti BS, Orr TE, Bragdon CR, Lowenstein JD, Jasty M, Harris WH (1997) Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment. J Biomed Mater Res 36:274–280

    Article  CAS  PubMed  Google Scholar 

  23. Ramaniraka NA, Rakotomanana LR, Leyvraz PF (2000) The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface. J Bone Joint Surg Br 82:297–303

    Article  CAS  PubMed  Google Scholar 

  24. Rodosky MW, Bigliani LU (1996) Indications for glenoid resurfacing in shoulder arthroplasty. J Shoulder Elbow Surg 5:231–248

    Article  CAS  PubMed  Google Scholar 

  25. Sabesan V, Callanan M, Sharma V, Iannotti JP (2014) Correction of acquired glenoid bone loss in osteoarthritis with a standard versus an augmented glenoid component. J Shoulder Elbow Surg 23:964–973. doi:10.1016/j.jse.2013.09.019

    Article  PubMed  Google Scholar 

  26. Stone KD, Grabowski JJ, Cofield RH, Morrey BF, An KN (1999) Stress analyses of glenoid components in total shoulder arthroplasty. J Shoulder Elbow Surg 8:151–158. doi:10.1016/s1058-2746(99)90009-5

    Article  CAS  PubMed  Google Scholar 

  27. Suarez DR, Valstar ER, van der Linden JC, van Keulen F, Rozing PM (2009) Effect of rotator cuff dysfunction on the initial mechanical stability of cementless glenoid components. Med Biol Eng Comput 47:507–514. doi:10.1007/s11517-009-0475-7

    Article  PubMed  Google Scholar 

  28. Terrier A, Brighenti V, Pioletti DP, Farron A (2012) Importance of polyethylene thickness in total shoulder arthroplasty: a finite element analysis. Clin Biomech 27:443–448. doi:10.1016/j.clinbiomech.2011.12.003

    Article  Google Scholar 

  29. Terrier A, Büchler P, Farron A (2005) Bone–cement interface of the glenoid component: stress analysis for varying cement thickness. Clin Biomech 20:710–717. doi:10.1016/j.clinbiomech.2005.03.010

    Article  Google Scholar 

  30. Terrier A, Büchler P, Farron A (2006) Influence of glenohumeral conformity on glenoid stresses after total shoulder arthroplasty. J Shoulder Elbow Surg 15:515–520. doi:10.1016/j.jse.2005.09.021

    Article  PubMed  Google Scholar 

  31. Throckmorton TW, Zarkadas PC, Sperling JW, Cofield RH (2010) Pegged versus keeled glenoid components in total shoulder arthroplasty. J Shoulder Elbow Surg 19:726–733. doi:10.1016/j.jse.2009.10.018

    Article  PubMed  Google Scholar 

  32. Ting FSH, Poon PC (2013) Perforation tolerance of glenoid implants to abnormal glenoid retroversion, anteversion, and medialization. J Shoulder Elbow Surg 22:188–196. doi:10.1016/j.jse.2011.12.009

    Article  PubMed  Google Scholar 

  33. Topoleski LD, Ducheyne P, Cuckler JM (1990) A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms. J Biomed Mater Res 24:135–154. doi:10.1002/jbm.820240202

    Article  CAS  PubMed  Google Scholar 

  34. Vavken P, Sadoghi P, von Keudell A, Rosso C, Valderrabano V, Muller AM (2013) Rates of radiolucency and loosening after total shoulder arthroplasty with pegged or keeled glenoid components. J Bone Joint Surg Am 95:215–221. doi:10.2106/jbjs.l.00286

    Article  PubMed  Google Scholar 

  35. Walch G, Moraga C, Young A, Castellanos-Rosas J (2012) Results of anatomic nonconstrained prosthesis in primary osteoarthritis with biconcave glenoid. J Shoulder Elbow Surg 21:1526–1533. doi:10.1016/j.jse.2011.11.030

    Article  PubMed  Google Scholar 

  36. Wang VM, Krishnan R, Ugwonali OFC, Flatow EL, Bigliani LU, Ateshian GA (2005) Biomechanical evaluation of a novel glenoid design in total shoulder arthroplasty. J Shoulder Elbow Surg 14:S129–S140. doi:10.1016/j.jse.2004.09.029

    Article  Google Scholar 

  37. Williams GR, Abboud JA (2005) Total shoulder arthroplasty: glenoid component design. J Shoulder Elbow Surg 14:S122–S128. doi:10.1016/j.jse.2004.09.028

    Article  Google Scholar 

  38. Wirth MA, Korvick DL, Basamania CJ, Toro F, Aufdemorte TB, Rockwood CA Jr (2001) Radiologic, mechanical, and histologic evaluation of 2 glenoid prosthesis designs in a canine model. J Shoulder Elbow Surg 10:140–148. doi:10.1067/mse.2001.112021

    Article  CAS  PubMed  Google Scholar 

  39. Yongpravat C, Kim HM, Gardner TR, Bigliani LU, Levine WN, Ahmad CS (2013) Glenoid implant orientation and cement failure in total shoulder arthroplasty: a finite element analysis. J Shoulder Elbow Surg 22:940–947. doi:10.1016/j.jse.2012.09.007

    Article  PubMed  Google Scholar 

  40. Zhang J, Yongpravat C, Kim HM, Levine WN, Bigliani LU, Gardner TR, Ahmad CS (2013) Glenoid articular conformity affects stress distributions in total shoulder arthroplasty. J Shoulder Elbow Surg 22:350–356. doi:10.1016/j.jse.2012.08.025

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Rafiq Abdul Kadir.

Ethics declarations

Conflict of interest

None.

Ethical approval

Access to the CT images of the right upper limb used in this study was granted by the Chairman of Clinical Research Centre, Hospital Tengku Ampuan Afzan, 25100 Kuantan, Pahang Darul Makmur, Malaysia. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, A.H.A., Kadir, M.R.A., Harun, M.N. et al. Number of pegs influence focal stress distributions and micromotion in glenoid implants: a finite element study. Med Biol Eng Comput 55, 439–447 (2017). https://doi.org/10.1007/s11517-016-1525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1525-6

Keywords

Navigation