Skip to main content
Log in

Effects of sensory augmentation on postural control and gait symmetry of transfemoral amputees: a case description

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Despite recent advances in leg prosthetics, transfemoral amputees still experience limitations in postural control and gait symmetry. It has been hypothesized that artificial sensory information might improve the integration of the prosthesis into the human sensory-motor control loops and, thus, reduce these limitations. In three transfemoral amputees, we investigated the effect of Electrotactile Moving Sensation for Sensory Augmentation (EMSSA) without training and present preliminary findings. Experimental conditions included standing with open/closed eyes on stable/unstable ground as well as treadmill walking. For standing conditions, spatiotemporal posturographic measures and sample entropy were derived from the center of pressure. For walking conditions, step length and stance duration were calculated. Conditions without feedback showed effects congruent with findings in the literature, e.g., asymmetric weight bearing and step length, and validated the collected data. During standing, with EMSSA a tendency to influence postural control in a negative way was found: Postural control was less effective and less efficient and the prosthetic leg was less involved. Sample entropy tended to decrease, suggesting that EMSSA demanded increased attention. During walking, with EMSSA no persistent positive effect was found. This contrasts the positive subjective assessment and the positive effect on one subject’s step length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arieta AH, Yokoi H, Arai T, Yu W (2006) Study on the effects of electrical stimulation on the pattern recognition for an EMG prosthetic application. In: 27th annual international conference of the engineering in medicine and biology society, 2005. IEEE-EMBS 2005. IEEE, pp 6919–6922

  2. Arieta AH, Afthinos M, Dermitzakis K (2011) Apparent moving sensation recognition in prosthetic applications. Proc Comput Sci 7:133–135

    Article  Google Scholar 

  3. Bach-y Rita P (2004) Tactile sensory substitution studies. Ann NY Acad Sci 1013:83–91

    Article  PubMed  Google Scholar 

  4. Bamberg SJM, Carson RJ, Stoddard G, Dyer PS, Webster JB (2010) The lower extremity ambulation feedback system for analysis of gait asymmetries: preliminary design and validation results. J Prosthet Orthot 22:31–36

    Article  Google Scholar 

  5. Bellmann M, Schmalz T, Ludwigs E, Blumentritt S (2012) Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint. Biomed Eng 57:435–444

    Article  Google Scholar 

  6. Blank A, Okamura AM, Kuchenbecker KJ (2010) Identifying the role of proprioception in upper-limb prosthesis control: studies on targeted motion. ACM Trans Appl Percept 7(3):15

    Article  Google Scholar 

  7. Borg FG, Laxaback G (2010) Entropy of balance—some recent results. J Neuroeng Rehabil 7:1–11

    Article  Google Scholar 

  8. Clippinger F, McElhaney J, Maxwell M, Vaughn D, Horton G, Bright L (1981) Prosthetic sensory feedback lower extremity. Newsl Pros Orth Clin 5:1–3

    Google Scholar 

  9. Clippinger FW, Seaber AV, McElhaney JH, Harrelson JM, Maxwell GM (1982) Afferent sensory feedback for lower extremity prosthesis. Clin Orthop Relat Res 169:202–206

    PubMed  Google Scholar 

  10. Davis BL, Cavanagh PR (1993) Decomposition of superimposed ground reaction forces into left and right force profiles. J Biomech 26:593–597

    Article  CAS  PubMed  Google Scholar 

  11. Donker SF, Roerdink M, Greven AJ, Beek PJ (2007) Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res 18:1–11

    Article  Google Scholar 

  12. Duclos C, Roll R, Kavounoudias A, Mongeau JP, Roll JP, Forget R (2009) Postural changes after sustained neck muscle contraction in persons with a lower leg amputation. J Electromygr Kinesiol 19(4):e214–e222

    Article  Google Scholar 

  13. Fahramand F, Rezacian T, Narimani R, Dinan PH (2006) Kinematic and dynamic analysis of the gait cycle of above-knee amputees. Sci Iran 13(3):261–271

    Google Scholar 

  14. Fan RE, Culjat MO, Kim CH, Franco ML, Boryk R, Bisley JW, Dutson E, Grundfest WS (2008) A haptic feedback system for lower-limb prostheses. IEEE Trans Neural Syst Rehabil Eng 16:270–277

    Article  PubMed  Google Scholar 

  15. Fan R, Wottawa C, Mulgaonkar A, Boryk R, Sander T, Wyatt M, Dutson E, Grundfest W, Culjat M (2009) Pilot testing of a haptic feedback rehabilitation system on a lower-limb amputee. In: ICME international conference on complex medical engineering, 2009. CME, pp 1–4

  16. Fernie GR, Holliday P (1978) Postural sway in amputees and normal subjects. J Bone Joint Surg Am 60(7):895–8

    CAS  PubMed  Google Scholar 

  17. Fuhr T, Schmidt G (1999) Design of a patient-mounted multi-sensor system for lower extremity neuroprostheses. In: Proceedings of the first joint BMES/EMBS conference serving humanity, advancing technology, p 662

  18. Gailey R, Allen K, Castles J, Kucharik J, Roeder M (2008) Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev 45(1):15

    Article  PubMed  Google Scholar 

  19. Geurts A, Mulder T (1992) Reorganisation of postural control following lower limb amputation: theoretical considerations and implications for rehabilitation. Physiother Theory Pract 8:145–157

    Article  Google Scholar 

  20. Giggins OM, Persson UM, Caulfield B (2013) Biofeedback in rehabilitation. J Neuroeng Rehabil 10(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gilbert J, Maxwell G, George R Jr, McElhaney J (1982) Technical note—auditory feedback of knee angle for amputees. Prosthet Orthot Int 6:103–104

    CAS  PubMed  Google Scholar 

  22. Goldberger A, Amaral L, Glass L (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101:215–220

    Article  Google Scholar 

  23. Hlavackova P, Fristios J, Cuisinier R, Pinsault N, Janura M, Vuillerme N (2009) Effects of mirror feedback on upright stance control in elderly transfemoral amputees. Arch Phys Med Rehabil 90(11):1960–1963

    Article  PubMed  Google Scholar 

  24. Hlavackova P, Franco C, Diot B, Vuillerme N (2011) Contribution of each leg to the control of unperturbed bipedal stance in lower limb amputees: new insights using entropy. PLoS One 6:1–4

    Article  Google Scholar 

  25. Izumi T, Hoshimiya N (1988) A presentation method of a traveling image for the sensory feedback for control of the paralyzed upper extremity. Syst Comput Jpn 19(8):1625–1632

    Article  Google Scholar 

  26. Jaegers SM, Arendzen JH, de Jongh HJ (1995) Prosthetic gait of unilateral transfemoral amputees: a kinematic study. Arch Phys Med Rehabil 76:736–743

    Article  CAS  PubMed  Google Scholar 

  27. Kaczmarek KA (1995) Sensory augmentation and substitution. CRC handbook of biomedical engineering. CRC, Boca Raton, FL, pp 2100–2109

  28. Kaczmarek K, Webster J, Bach-y Rita P, Tompkins W (1991) Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng 38(1):1–16

    Article  CAS  PubMed  Google Scholar 

  29. Kawamura J, Sueda O, Harada K, Nishihara K, Isobe S (1981) Sensory feedback systems for the lower-limb prosthesis. J Osaka Rosai Hosp 5:104–112

    Google Scholar 

  30. Kulkarni J, Toole C, Hirons R, Wright S, Morris J (1996) Falls in patients with lower limb amputations: prevalence and contributing factors. Physiotherapy 82:130–136

    Article  Google Scholar 

  31. Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variability. J Physiol Regul Integr Comp Physiol 10:789–797

    Article  Google Scholar 

  32. Martinez-Villalpando EC, Mooney L, Elliott G, Herr H (2011) Antagonistic active knee prosthesis. a metabolic cost of walking comparison with a variable-damping prosthetic knee. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, EMBC. IEEE, pp 8519–8522

  33. Meyer PF, Oddsson LIE, Lucca CJD (2004) The role of plantar cutaneous sensation in unperturbed stance. Exp Brain Res 156:505–512

    Article  PubMed  Google Scholar 

  34. Miller WC, Speechley M, Deathe AB (2002) Balance confidence among people with lower-limb amputations. Phys Ther 82:856–865

    PubMed  Google Scholar 

  35. Nolan L, Wit A, Dudziñski K, Lees A, Lake M, Wychowañski M (2003) Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 17(2):142

    Article  PubMed  Google Scholar 

  36. Pagel A, Oes J, Pfeifer S, Riener R, Vallery H (2013) Künstliches Feedback für Oberschenkelamputierte-Theoretische Analyse/Artificial feedback for transfemoral amputees-Theoretical analysis. at-Automatisierungstechnik 61(9):621–629

    Article  Google Scholar 

  37. Pfeifer S, Caldiran O, Vallery H, Riener R, Arieta AH (2010) Displaying centre of pressure location by electrotactile stimulation using phantom sensation. In: Proceedings of the 2010 15th annual conference of the international functional electrical stimulation society, pp 1–3

  38. Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM (1996) Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng 43:956–966

    Article  CAS  PubMed  Google Scholar 

  39. Pylatiuk C, Kargov A, Schulz S (2006) Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. J Prosthet Orthot 18(2):57–61

    Article  Google Scholar 

  40. Ramdani S, Seigle B, Lagardea J, Boucharab F, Bernarda PL (2009) On the use of sample entropy to analyze human postural sway data. Med Eng Phys 31:1023–1031

    Article  PubMed  Google Scholar 

  41. Roerdink M, Geurts ACH, de Haart M, Beek PJ (2009) On the relative contribution of the paretic leg to the control of posture after stroke. Neurorehabil Neural Repai 23:267–274

    Article  Google Scholar 

  42. Sabolich JA, Ortega GM (1994) Sense of feel for lower-limb amputees: a phase-one study. J Prosthet Orthot 6:36–41

    Article  Google Scholar 

  43. Seps M, Dermitzakis K, Arieta AH (2011) Study on lower back electrotactile stimulation characteristics for prosthetic sensory feedback. In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 3454–3459

  44. Stepp CE, An Q, Matsuoka Y (2012) Repeated training with augmentative vibrotactile feedback increases object manipulation performance. PLoS One 7(2):e32,743

    Article  CAS  Google Scholar 

  45. Sup F, Varol H, Mitchell J, Withrow T, Goldfarb M (2009) Self-contained powered knee and ankle prosthesis: initial evaluation on a transfemoral amputee. In: 2009 IEEE 11th international conference on rehabilitation robotics

  46. Tschupp G, Vallery H, Riener R, Schanze T, Pagel A (2013) Sensor for artificial feedback in lower limb exoprostheses. In: Proceedings of the 2013 ISPO world congress, p 1

  47. Varol HA, Sup F, Goldfarb M (2010) Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE T Biomed Eng 57(3):542–551

    Article  Google Scholar 

  48. Vrieling A, van Keeken H, Schoppen T, Otten E, Hof A, Halbertsma J, Postema K (2008) Balance control on a moving platform in unilateral lower limb amputees. Gait Posture 28:222–228

    Article  CAS  PubMed  Google Scholar 

  49. Webb G, Ewins D, Ghoussayni S (2012) Electro-tactile sensation thresholds for an amputee gait-retraining system. In: 3rd annual conference of the international functional electrical stimulation society

  50. Wiener N et al (1948) Cybernetics. Wiley, New York

    Google Scholar 

  51. Yang L, Dyer P, Carson R, Webster J, Foreman KB, Bamberg S (2012) Utilization of a lower extremity ambulatory feedback system to reduce gait asymmetry in transtibial amputation gait. Gait Posture 36:631–634

    Article  CAS  PubMed  Google Scholar 

  52. Zambarbieri D, Schmid M, Verni G (2001) Sensory feedback for lower limb prostheses. CRC Press Inc, Boca Raton

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation through the National Centre of Competence in Research Robotics, by the Gottfried und Julia Bangerter-Rhyner Stiftung, by an ETH research grant, and by the Marie-Curie career integration Grant PCIG13-GA-2013-618899. The authors would like to thank S. Bühler for her support during the experiments, G. Tschupp and the team of BalgristTec for providing their technical expertise, and the subjects who participated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pagel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagel, A., Arieta, A.H., Riener, R. et al. Effects of sensory augmentation on postural control and gait symmetry of transfemoral amputees: a case description. Med Biol Eng Comput 54, 1579–1589 (2016). https://doi.org/10.1007/s11517-015-1432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1432-2

Keywords

Navigation