Skip to main content

Advertisement

Log in

Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2016

Abstract

A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdelhalim K, Jafari H, Kokarovtseva L, Perez Velazquez J, Genov R (2013) 64-channel UWB wireless neural vector analyzer SoC with a closed-loop phase synchrony-triggered neurostimulator. IEEE J Solid State Circuits 48(10):2494–2510

    Article  Google Scholar 

  2. Abdelhalim K, Kokarovtseva L, Perez Velazquez J, Genov R (2013) 915-MHz FSK/OOK wireless neural recording SoC with 64 mixed-signal FIR filters. IEEE J Solid State Circuits 48(10):2478–2493

    Article  Google Scholar 

  3. Anderson WS, Lenz FA (2006) Surgery insight: deep brain stimulation for movement disorders. Nat Clin Pract Neurol 2(6):310–320

    Article  PubMed  Google Scholar 

  4. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137(5):1394–1409

    Article  PubMed  PubMed Central  Google Scholar 

  5. Asanuma H, Stoney SD, Abzug C (1968) Relationship between afferent input and motor outflow in cat motorsensory cortex. J Neurophysiol 31(5):670–681

    CAS  PubMed  Google Scholar 

  6. Avestruz AT, Santa W, Carlson D, Jensen R, Stanslaski S, Helfenstine A, Denison T (2008) A 5 \(\mu W\)/Channel spectral analysis IC for chronic bidirectional brain machine interfaces. IEEE J Solid State Circuits 43(12):3006–3024

    Article  Google Scholar 

  7. Azin M, Guggenmos D, Barbay S, Nudo R, Mohseni P (2011) A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface. IEEE J Solid State Circuits 46(4):731–745

    Article  Google Scholar 

  8. Azin M, Guggenmos D, Barbay S, Nudo R, Mohseni P (2011) A miniaturized system for spike-triggered intracortical microstimulation in an ambulatory rat. IEEE Trans Biomed Eng 58(9):2589–2597

    Article  PubMed  Google Scholar 

  9. Benabid A, Pollak P, Hoffmann D, Gervason C, Hommel M, Perret J, de Rougemont J, Gao D (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337(8738):403–406

    Article  CAS  PubMed  Google Scholar 

  10. Bensmaia SJ, Miller LE (2014) Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci 15:313–325

    Article  CAS  PubMed  Google Scholar 

  11. Berg J, Dammann J, Tenore F, Tabot G, Boback J, Manfredi L, Peterson M, Katyal K, Johannes M, Makhlin A, Wilcox R, Franklin R, Vogelstein R, Hatsopoulos N, Bensmaia S (2013) Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 21(3):500–507

    Article  CAS  PubMed  Google Scholar 

  12. Berger T, Ahuja A, Courellis S, Deadwyler S, Erinjippurath G, Gerhardt G, Gholmieh G, Granacki J, Hampson R, Hsaio MC, Lacoss J, Marmarelis V, Nasiatka P, Srinivasan V, Song D, Tanguay A, Wills J (2005) Restoring lost cognitive function. IEEE Eng Medi Biol Mag 24(5):30–44

    Article  Google Scholar 

  13. Berger T, Baudry M, Brinton R, Liaw JS, Marmarelis V, Yoondong Park A, Sheu B, Tanguay A (2001) Brain-implantable biomimetic electronics as the next era in neural prosthetics. IEEE Proc 89(7):993–1012

    Article  CAS  Google Scholar 

  14. Berger T, Song D, Chan R, Shin D, Marmarelis V, Hampson R, Sweatt A, Heck C, Liu C, Wills J, LaCoss J, Granacki J, Gerhardt G, Deadwyler S (2012) Role of the hippocampus in memory formation: restorative encoding memory integration neural device as a cognitive neural prosthesis. IEEE Pulse 3(5):17–22

    Article  PubMed  Google Scholar 

  15. Berger TW, Hampson RE, Song D, Goonawardena A, Marmarelis VZ, Deadwyler SA (2011) A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng 8(4):046017

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bergey GK (2013) Neurostimulation in the treatment of epilepsy. Exp Neurol 244:87–95

    Article  PubMed  Google Scholar 

  17. Beverlin B II, Netoff TI (2013) Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation. Front Neural Circuits 6(126):1–9

    Google Scholar 

  18. Biederman W, Yeager D, Narevsky N, Leverett J, Neely R, Carmena J, Alon E, Rabaey J (2015) A 4.78 \(mm^2\) fully-integrated neuromodulation SoC combining 64 acquisition channels with digital compression and simultaneous dual stimulation. IEEE J Solid State Circuits 50(4):1038–1047

    Article  Google Scholar 

  19. Birdno MJ, Grill WM (2008) Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 5(1):14–25

    Article  PubMed  PubMed Central  Google Scholar 

  20. Birdno MJ, Kuncel AM, Dorval AD, Turner DA, Gross RE, Grill WM (2012) Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J Neurophysiol 107(1):364–383

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brocker DT, Swan BD, Turner DA, Gross RE, Tatter SB, Miller Koop M, Bronte-Stewart H, Grill WM (2013) Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Exp Neurol 239:60–67

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bronte-Stewart H, Barberini C, Koop MM, Hill BC, Henderson JM, Wingeier B (2009) The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol 215(1):20–28

    Article  CAS  PubMed  Google Scholar 

  24. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21(3):1033–1038

    CAS  PubMed  Google Scholar 

  25. Chae MS, Yang Z, Yuce MR, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Systems Rehabil Eng 17(4):312–321

    Article  Google Scholar 

  26. Chan AM, Sun FT, Boto EH, Wingeier BM (2008) Automated seizure onset detection for accurate onset time determination in intracranial EEG. Clin Neurophysiol 119(12):2687–2696

    Article  PubMed  Google Scholar 

  27. Chan CH, Wills J, LaCoss J, Granacki J, Choma J (2006) A micro-power low-noise auto-zeroing CMOS amplifier for cortical neural prostheses. In: IEEE on biomedical circuits and systems conference, 2006, BioCAS 2006, pp 214–217

  28. Chen WM, Chiueh H, Chen TJ, Ho CL, Jeng C, Ker MD, Lin CY, Huang YC, Chou CW, Fan TY, Cheng MS, Hsin YL, Liang SF, Wang YL, Shaw FZ, Huang YH, Yang CH, Wu CY (2014) A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control. IEEE J Solid State Circuits 49(1):232–247

    Article  CAS  Google Scholar 

  29. Clippinger FW, Avery R, Titus B (1974) A sensory feedback system for an upper-limb amputation prosthesis. Bull Prosthet Res 22:247–258

    Google Scholar 

  30. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R, Cameron J, Chen D et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134(6):1591–1609

    Article  PubMed  PubMed Central  Google Scholar 

  32. D’Alessandro M, Esteller R, Vachtsevanos G, Hinson A, Echauz J, Litt B (2003) Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans Biomed Eng 50(5):603–615

    Article  PubMed  Google Scholar 

  33. de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, Ostrem JL, Galifianakis NB, Starr PA (2013) Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci 110(12):4780–4785

    Article  PubMed  PubMed Central  Google Scholar 

  34. Deng ZD, Lisanby SH, Peterchev AV (2013) Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  35. Denison T, Consoer K, Santa W, Avestruz AT, Cooley J, Kelly A (2007) A 2\(\mu W\) 100 nV/\(\sqrt{Hz}\) chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J Solid State Circuits 42(12):2934–2945

    Article  Google Scholar 

  36. Deuschl G, Herzog J, Kleiner-Fisman G, Kubu C, Lozano AM, Lyons KE, Rodriguez-Oroz MC, Tamma F, Tröster AI, Vitek JL et al (2006) Deep brain stimulation: postoperative issues. Mov Disord 21(S14):S219–S237

    Article  PubMed  Google Scholar 

  37. Dhillon G, Horch K (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13(4):468–472

    Article  PubMed  Google Scholar 

  38. Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW (2004) Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg 29(4):605–615

    Article  Google Scholar 

  39. Drolet J, Semmaoui H, Sawan M (2011) Low-power energy-based CMOS digital detector for neural recording arrays. In: IEEE on biomedical circuits and systems conference (BioCAS), pp 13–16

  40. Duebel J, Marazova K, Sahel JA (2015) Optogenetics. Curr Opin Ophthalmol 26(3):226–232

    Article  PubMed  Google Scholar 

  41. Edwardson M, Lucas T, Carey J, Fetz E (2013) New modalities of brain stimulation for stroke rehabilitation. Exp Brain Res 224(3):335–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Engel AK, Moll CK, Fried I, Ojemann GA (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6(1):35–47

    Article  CAS  PubMed  Google Scholar 

  43. Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485(7398):368–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fang X, Wills J, Granacki J, LaCoss J, Choma J (2008) CMOS charge-metering microstimulator for implantable prosthetic device. In: 51st Midwest symposium on circuits and Systems, MWSCAS, pp 826–829

  45. Feng XJ, Greenwald B, Rabitz H, Shea-Brown E, Kosut R (2007) Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. J Neural Eng 4(2):L14

    Article  PubMed  Google Scholar 

  46. Fetz EE (2015) Chapter 12–restoring motor function with bidirectional neural interfaces. In: Dancause N, Nadeau S, Rossignol S (eds) Sensorimotor rehabilitation at the crossroads of basic and clinical sciences, vol 218 of progress in brain research. Elsevier, Amsterdam, pp 241–252

    Google Scholar 

  47. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D et al (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5):899–908

    Article  PubMed  Google Scholar 

  48. Fisher RS, Velasco AL (2014) Electrical brain stimulation for epilepsy. Nat Rev Neurol 10(5):261–270

    Article  PubMed  Google Scholar 

  49. Fitzgerald J, Lacour SP, McMahon S, Fawcett J (2009) Microchannel electrodes for recording and stimulation: in vitro evaluation. IEEE Trans Biomed Eng 56(5):1524–1534

    Article  PubMed  Google Scholar 

  50. Fitzsimmons N, Drake W, Hanson T, Lebedev M, Nicolelis M (2007) Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J Neurosci 27(21):5593–5602

    Article  CAS  PubMed  Google Scholar 

  51. Ghez C, Gordon J, Ghilardi MF (1995) Impairments of reaching movements in patients without proprioception. II. effects of visual information on accuracy. J Neurophysiol 73(1):361–372

    CAS  PubMed  Google Scholar 

  52. Gosselin B, Sawan M (2009) An ultra low-power CMOS automatic action potential detector. IEEE Trans Neural Syst Rehabil Eng 17(4):346–353

    Article  PubMed  Google Scholar 

  53. Guggenmos DJ, Azin M, Barbay S, Mahnken JD, Dunham C, Mohseni P, Nudo RJ (2013) Restoration of function after brain damage using a neural prosthesis. Proc Natl Acad Sci 110(52):21177–21182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hampson R, Song D, Chan R, Sweatt A, Riley M, Gerhardt G, Shin D, Marmarelis V, Berger T, Deadwyler S (2012) A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation. IEEE Trans Neural Syst Rehabil Eng 20(2):184–197

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA, Marmarelis VZ, Berger TW, Deadwyler SA (2013) Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng 10(6):066013

    Article  PubMed  PubMed Central  Google Scholar 

  56. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377(9781):1938–1947

    Article  PubMed  PubMed Central  Google Scholar 

  57. Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid State Circuits 42(1):123–133

    Article  Google Scholar 

  58. Heck CN, King-Stephens D, Massey AD, Nair DR, Jobst BC, Barkley GL, Salanova V, Cole AJ, Smith MC, Gwinn RP et al (2014) Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the rns system pivotal trial. Epilepsia 55(3):432–441

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hillman EM (2007) Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt 12(5):051402–051402

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, Pvd Smagt, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsiao SS, Fettiplace M, Darbandi B (2011) Sensory feedback for upper limb prostheses. In: Lepore F, Green A, Elaine Chapman C, Kalaska JF (eds) Progress in brain research, vol 192. Elsevier, Philadelphia, PA, USA, pp 69–81

  62. Jackson A, Mavoori J, Fetz EE (2006) Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444(7115):56–60

    Article  CAS  PubMed  Google Scholar 

  63. Jackson A, Mavoori J, Fetz EE (2007) Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey. J Neurophysiol 97(1):360–374

    Article  PubMed  Google Scholar 

  64. Johnson KO, Hsiao SS (1992) Neural mechanisms of tactual form and texture perception. Ann Rev Neurosci 15(1):227–250

    Article  CAS  PubMed  Google Scholar 

  65. Jung R, Brauer EJ, Abbas JJ (2001) Real-time interaction between a neuromorphic electronic circuit and the spinal cord. IEEE Trans Neural Syst Rehabil Eng 9(3):319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaiser J (1990) On a simple algorithm to calculate the ‘energy’ of a signal. In: 1990 international conference on acoustics, speech, and signal processing, ICASSP-90, vol. 1, pp 381–384

  67. Kerr CC, Neymotin SA, Chadderdon GL, Fietkiewicz CT, Francis JT, Lytton WW (2012) Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex. IEEE Trans Neural Syst Rehabil Eng 20(2):153–160

    Article  PubMed  Google Scholar 

  68. Kipke DR, Shain W, Buzsáki G, Fetz E, Henderson JM, Hetke JF, Schalk G (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–11838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2(3):145–156

    Article  PubMed  Google Scholar 

  70. Kühn AA, Kempf F, Brücke C, Doyle LG, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider GH, Hariz MI et al (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory \(\beta\) activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 28(24):6165–6173

    Article  PubMed  CAS  Google Scholar 

  71. Kühn AA, Kupsch A, Schneider GH, Brown P (2006) Reduction in subthalamic 8–35 hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci 23(7):1956–1960

    Article  PubMed  Google Scholar 

  72. Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, Callaghan OJ, Eisenberg E, Milbouw G et al (2007) Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 132(1):179–188

    Article  PubMed  Google Scholar 

  73. Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115(11):2431–2441

    Article  PubMed  Google Scholar 

  74. Kuo MF, Paulus W, Nitsche MA (2014) Therapeutic effects of non-invasive brain stimulation with direct currents (tdcs) in neuropsychiatric diseases. Neuroimage 85:948–960

    Article  PubMed  Google Scholar 

  75. Lacour SP, Fitzgerald J, Lago N, Tarte E, McMahon S, Fawcett J (2009) Long micro-channel electrode arrays: A novel type of regenerative peripheral nerve interface. IEEE Trans Neural Syst Rehabil Eng 17(5):454–460

    Article  PubMed  Google Scholar 

  76. Laxpati NG, Mahmoudi B, Gutekunst CA, Newman JP, Zeller-Townson R, Gross RE (2014) Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with neurorighter. Front Neuroeng 7(40):1–15

    Google Scholar 

  77. Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 17(2):322–329

    Article  CAS  PubMed  Google Scholar 

  78. Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WRS, Bare M, Cysyk B, Krauss G, Gordon B (1999) Brief bursts of pulse stimulation terminate after discharges caused by cortical stimulation. Neurology 53(9):2073–2073

    Article  CAS  PubMed  Google Scholar 

  79. Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinsons disease. Brain 125(6):1196–1209

    Article  PubMed  Google Scholar 

  80. Liew S, Santarnecchi E, Buch E, Cohen L (2014) Noninvasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Front Human Neurosci 8:378

    Article  Google Scholar 

  81. Little S, Brown P (2012) What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann N Y Acad Sci 1265(1):9–24

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lucas TH, Fetz EE (2013) Myo-cortical crossed feedback reorganizes primate motor cortex output. J Neurosci 33(12):5261–5274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mavoori J, Jackson A, Diorio C, Fetz E (2005) An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J Neurosci Methods 148(1):71–77

    Article  PubMed  Google Scholar 

  84. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660

    Article  CAS  PubMed  Google Scholar 

  85. Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456(7222):639–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morrell MJ (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77(13):1295–1304

    Article  PubMed  Google Scholar 

  87. Morris GL, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C (2013) Evidence-based guideline update: Vagus nerve stimulation for the treatment of epilepsy report of the guideline development subcommittee of the american academy of neurology. Neurology 81(16):1453–1459

    Article  PubMed  PubMed Central  Google Scholar 

  88. Muller R, Gambini S, Rabaey J (2012) A 0.013 mm2 5 μW DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid State Circuits 47(1):232–243

    Article  Google Scholar 

  89. Nag S, Thakor NV (2016) Implantable neurotechnologies: electrical stimulation and applications. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1442-0

  90. Neuropace Inc (2015) RNS System User Manual. http://www.neuropace.com/wp-content/uploads/2015/11/UserManual.pdf

  91. Newman JP, Zeller-Townson R, Mf Fong, Arcot Desai S, Gross RE, Potter SM (2013) Closed-loop, multichannel experimentation using the open-source neurorighter electrophysiology platform. Front Neural Circuits 6(98):1–18

    Google Scholar 

  92. Ng KA, Greenwald E, Xu YP, Thakor NV (2016) Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1431-3

  93. Nishimura Y, Perlmutter SI, Eaton RW, Fetz EE (2013) Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron 80(5):1301–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nishimura Y, Perlmutter SI, Fetz EE (2013) Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front Neural Circuits 7(57):1–9

    Google Scholar 

  95. Nitsche MA, Paulus W (2011) Transcranial direct current stimulation-update 2011. Restor Neurol Neurosci 29(6):463–492

    PubMed  Google Scholar 

  96. Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272(5269):1791–1794

    Article  CAS  PubMed  Google Scholar 

  97. Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354(9189):1526

    Article  CAS  PubMed  Google Scholar 

  98. Ochoa J, Torebjörk E (1983) Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol 342(1):633–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. O’Doherty JE, Lebedev MA, Hanson TL, Fitzsimmons NA, Nicolelis MA (2009) A brain-machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci 3(20):1–10

    Google Scholar 

  100. O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MAL (2011) Active tactile exploration using a brain-machine-brain interface. Nature 479(7372):228–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA (2012) Closing the loop in primate prefrontal cortex: Inter-laminar processing. Front Neural Circuits 6(88):1–13

    Google Scholar 

  102. Parthasarathy AB, Fox DJ, Dunn AK, Weber EL, Richards LM (2010) Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. J Biomed Opt 15(6):066030–066030

    Article  PubMed  Google Scholar 

  103. Patil AC, Thakor NV (2016) Implantable neurotechnologies: a review of micro and nano-electrodes for neural recording. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1430-4

  104. Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1):64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Plow EB, Carey JR, Nudo RJ, Pascual-Leone A (2009) Invasive cortical stimulation to promote recovery of function after stroke a critical appraisal. Stroke 40(5):1926–1931

    Article  PubMed  PubMed Central  Google Scholar 

  106. Polasek KH, Hoyen HA, Keith MW, Kirsch RF, Tyler DJ (2009) Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng 17(5):428–437

    Article  PubMed  PubMed Central  Google Scholar 

  107. Pons T, Garraghty P, Ommaya A, Kaas J, Taub E, Mishkin M (1991) Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252(5014):1857–1860

    Article  CAS  PubMed  Google Scholar 

  108. Priori A, Foffani G, Pesenti A, Tamma F, Bianchi A, Pellegrini M, Locatelli M, Moxon K, Villani R (2004) Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol 189(2):369–379

    Article  CAS  PubMed  Google Scholar 

  109. Priori A, Foffani G, Rossi L, Marceglia S (2013) Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245:77–86

    Article  PubMed  Google Scholar 

  110. Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E et al (2014) Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med 6(222):222ra19–222ra19

    Article  PubMed  Google Scholar 

  111. Rebesco JM, Stevenson IH, Körding KP, Solla SA, Miller LE (2010) Rewiring neural interactions by micro-stimulation. Front Syst Neurosci 4(39):1–15

    Google Scholar 

  112. Reger BD, Fleming KM, Sanguineti V, Alford S, Mussa-Ivaldi FA (2000) Connecting brains to robots: an artificial body for studying the computational properties of neural tissues. Artif Life 6(4):307–324

    Article  CAS  PubMed  Google Scholar 

  113. Rhew HG, Jeong J, Fredenburg J, Dodani S, Patil P, Flynn M (2014) A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J Solid State Circuits 99:1–15

    Google Scholar 

  114. Romo R, Hernndez A, Zainos A, Brody CD, Lemus L (2000) Sensing without touching: Psychophysical performance based on cortical microstimulation. Neuron 26(1):273–278

    Article  CAS  PubMed  Google Scholar 

  115. Romo R, Hernndez A, Zainos A, Salinas E (1998) Somatosensory discrimination based on cortical microstimulation. Nature 392:387

    Article  CAS  PubMed  Google Scholar 

  116. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72(2):370–384

    Article  CAS  PubMed  Google Scholar 

  117. Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, Cipriani C, Denaro L, Denaro V, Pino GD, Ferreri F, Guglielmelli E, Hoffmann KP, Raspopovic S, Rigosa J, Rossini L, Tombini M, Dario P (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121(5):777–783

    Article  PubMed  Google Scholar 

  118. Rouse AG, Stanslaski SR, Cong P, Jensen RM, Afshar P, Ullestad D, Gupta R, Molnar GF, Moran DW, Denison TJ (2011) A chronic generalized bi-directional brain machine interface. J Neural Eng 8(3):036018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73(2):820–835

    CAS  PubMed  Google Scholar 

  120. Sasada S, Kato K, Kadowaki S, Groiss SJ, Ugawa Y, Komiyama T, Nishimura Y (2014) Volitional walking via upper limb muscle-controlled stimulation of the lumbar locomotor center in man. J Neurosci 34(33):11131–11142

    Article  CAS  PubMed  Google Scholar 

  121. Schiefer MA, Freeberg M, Pinault GJC, Anderson J, Hoyen H, Tyler DJ, Triolo RJ (2013) Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode. J Neural Eng 10(5):056006

    Article  CAS  PubMed  Google Scholar 

  122. Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–220

    Article  CAS  PubMed  Google Scholar 

  123. Sherman DL, Tsai YC, Rossell LA, Mirski MA, Thakor NV (1997) Spectral analysis of a thalamus-to-cortex seizure pathway. IEEE Trans Biomed Eng 44(8):657–664

    Article  CAS  PubMed  Google Scholar 

  124. Silberstein P, Pogosyan A, Kühn AA, Hotton G, Tisch S, Kupsch A, Dowsey-Limousin P, Hariz MI, Brown P (2005) Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128(6):1277–1291

    Article  PubMed  Google Scholar 

  125. Song W, Kerr CC, Lytton WW, Francis JT (2013) Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex. PloS one 8(3):e57453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stanslaski S, Afshar P, Cong P, Giftakis J, Stypulkowski P, Carlson D, Linde D, Ullestad D, Avestruz AT, Denison T (2012) Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng 20(4):410–421

    Article  PubMed  Google Scholar 

  127. Stewart JD (2003) Peripheral nerve fascicles: Anatomy and clinical relevance. Muscle Nerve 28(5):525–541

    Article  PubMed  Google Scholar 

  128. Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback from multiple sensory modalities enhances brain machine interface control. J Neurosci 30(50):16777–16787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ (2013) Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci 110(45):18279–18284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tan D, Schiefer M, Keith MW, Anderson R, Tyler DJ (2013) Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in a human amputee. In: 2013 6th international IEEE/EMBS conference on neural engineering (NER), pp 859–862

  131. Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ (2014) A neural interface provides long-term stable natural touch perception. Sci Transl Med 6(257):257ra138

    Article  PubMed  Google Scholar 

  132. Tessadori J, Bisio M, Martinoia S, Chiappalone M (2012) Modular neuronal assemblies embodied in a closed-loop environment: towards future integration of brains and machines. Front Neural Circuits 6(99):1–16

    Google Scholar 

  133. Tyler DJ, Durand DM (2003) Chronic response of the rat sciatic nerve to the flat interface nerve electrode. Ann Biomed Eng 31(6):633–642

    Article  PubMed  Google Scholar 

  134. Vagus Nerve Stimulation Study Group (1995) A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology 45:224–230

    Article  Google Scholar 

  135. Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan A (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid State Circuits 45(4):804–816

    Article  Google Scholar 

  136. Volkmann J, Moro E, Pahwa R (2006) Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord 21(S14):S284–S289

    Article  PubMed  Google Scholar 

  137. Weber DJ, Friesen R, Miller LE (2012) Interfacing the somatosensory system to restore touch and proprioception: Essential considerations. J Motor Behav 44(6):403–418

    Article  Google Scholar 

  138. Wise KD, Sodagar AM, Yao Y, Gulari MN, Perlin GE, Najafi K (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96(7):1184–1202

    Article  CAS  Google Scholar 

  139. Yoo J, Yan L, El-Damak D, Altaf M, Shoeb A, Chandrakasan A (2013) An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE J Solid State Circuits 48(1):214–228

    Article  Google Scholar 

  140. Zanos S, Richardson A, Shupe L, Miles F, Fetz E (2011) The neurochip-2: An autonomous head-fixed computer for recording and stimulating in freely behaving monkeys. IEEE Trans Neural Syst Rehabil Eng 19(4):427–435

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhang F, Mishra A, Richardson A, Otis B (2011) A low-power ECoG/EEG processing IC with integrated multiband energy extractor. IEEE Trans Circuits Systems I Regular Papers 58(9):2069–2082

    Article  Google Scholar 

  142. Zhang Y, Zhang F, Shakhsheer Y, Silver J, Klinefelter A, Nagaraju M, Boley J, Pandey J, Shrivastava A, Carlson E, Wood A, Calhoun B, Otis B (2013) A batteryless 19 \(\mu W\) MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J Solid State Circuits 48(1):199–213

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NRF CRP 10201201 and RO1HL071568. The authors acknowledge Chen Cheng for her help in obtaining the data in Figure 3b, and Matthew Fifer, Janaka Senarathna, and Robert Yaffe for helpful comments and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot Greenwald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenwald, E., Masters, M.R. & Thakor, N.V. Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations. Med Biol Eng Comput 54, 1–17 (2016). https://doi.org/10.1007/s11517-015-1429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1429-x

Keywords

Navigation