Skip to main content

Advertisement

Log in

Biomechanical behavior of plantar fat pad in healthy and degenerative foot conditions

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The plantar fat pad of the human foot is a specific tissue made up of adipose chambers enveloped by fibrous septa. Aging, pathology or trauma may affect its histo-morphological configuration and mechanical response. The correlation between histo-morphological configuration and mechanical properties is analyzed by a computational approach, aiming to identify the influence of degenerative phenomena on plantar fat pad mechanics. Finite element meso-models, as numerical model of an intermediate-length scale, are developed for healthy and degenerative conditions, considering the different properties that degenerative phenomena may affect, such as the adipose chambers dimension, the fibrous septa thickness, the fibers orientation and the sub-components mechanical behavior. Histo-morphometric data are analyzed to identify average configurations of the fat chambers and fibrous septa, while specific constitutive formulations are provided to define their mechanical response. Numerical analyses are performed to identify the stress–strain behavior of the plantar fat pad considering healthy and degenerative configurations. The results from meso-models are applied to identify the parameters of a phenomenological constitutive formulation that interprets the overall human fat pad tissue mechanics. The constitutive formulation is implemented within a 3D finite element model of the heel region that is applied to evaluate the influence of degenerative phenomena on the overall mechanical functionality of the foot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blechschmidt E (1982) The structure of calcaneal padding. Foot Ankle Int 2(5):260–283

    Article  CAS  Google Scholar 

  2. Buschmann WR, Jahss MH, Kummer F, Desal P, Gee RO, Ricci JL (1995) Histology and histomorphometric analysis of the normal and atrophic hell fat pad. Foot Ankle Int 16:254–258

    Article  CAS  PubMed  Google Scholar 

  3. Comley K, Fleck NA (2012) The compressive response of porcine adipose tissue from low to high strain rate. Int J Impact Eng 46:1–10

    Article  Google Scholar 

  4. Erdermir A, Sirimamilla PA, Halloran JP, van den Bogert AJ (2009) An elaborate data set characterizing the mechanical response of the foot. J Bio Eng Trans ASME 131:094502

    Article  Google Scholar 

  5. Elkhyat A, Courderot-Masuyer C, Gharbi T, Humbert P (2004) Influence of the hydrophobic and hidrophilic characteristics of sliding and slider surfaces on frifìction coefficient: in vivo human skin friction comparison. Skin Res Technol 10:215–221

    Article  PubMed  Google Scholar 

  6. Fernandez JW, Ul Haque MZ, Hunter PJ, Mithraratne K (2012) Mechanics of the foot Part 1: a continuum framework for evaluating soft tissue stiffening in the pathologic foot. Int J Numer Meth Biomed Eng 28(10):1056–1070

    Article  CAS  Google Scholar 

  7. Fontanella CG, Matteoli S, Carniel EL, Wilhjelm JE, Virga A, Corvi A, Natali AN (2012) Investigation on the load-displacement curves of a human healthy heel pad: in vivo compression data compared to numerical results. Med Eng Phys 34(9):1253–1259

    Article  CAS  PubMed  Google Scholar 

  8. Fontanella CG, Carniel EL, Forestiero A, Natali AN (2014) Investigation of the mechanical behaviour of the foot skin. Skin Res Technol 20(4):445–452

    Article  CAS  PubMed  Google Scholar 

  9. Funk JR, Hall GW, Crandall JR, Pilkey WD (2000) Linear and quasi-linear visco-elastic characterization of ankle ligament. J Biomed Eng 122:15–22

    CAS  Google Scholar 

  10. Geerlings M, Peters GWM, Ackermans PAJ, Oomens CWJ, Baaijens FPT (2008) Linear viscoelastic response of adipose tissue. Biorheology 45(6):677–688

    Google Scholar 

  11. Gefen A (2003) Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med Eng Phys 25:491–499

    Article  PubMed  Google Scholar 

  12. Gefen A (2010) The biomechanics of heel ulcers. J Tissue Viability 19:124–131

    Article  PubMed  Google Scholar 

  13. Goske S, Erdermir A, Petre M, Budhabhatti S, Cavanagh PR (2006) Reduction of plantar heel pressure: insole design using finite element analysis. J Biomech 39:2363–2370

    Article  PubMed  Google Scholar 

  14. Hsu TC, Wang CL, Tsai WC, Kuo JK, Tang FT (1998) Comparison of the mechanical properties of the heel pad between young and elderly adults. Arch Phys Med Rehabil 79:1101–1104

    Article  CAS  PubMed  Google Scholar 

  15. Hsu CC, Tsai WC, Hsiao TY, Tseng FY, Shau YW, Wang CL, Lin SC (2009) Diabetic effects on microchambers and macrochambers tissue properties in human heel pad. Clin Biomech 24:682–686

    Article  Google Scholar 

  16. Jahss MH, Michelson JD, Desal P, Kaye R, Kummer F, Buschmann WR, Watkins F, Reich S (1992) Investigation into the fat pads of the sole of the foot: anatomy and histology. Foot Ankle Int 13:227–232

    Article  CAS  Google Scholar 

  17. Kao PF, Brian LD, Hardy PA (1999) Characterization of the calcaneal fat pad in diabetic and non-diabetic patients using magnetic resonance imaging. Magn Reson Imaging 17(6):851–857

    Article  CAS  PubMed  Google Scholar 

  18. Kinami JK (1984) The structural and functional organization of the connective tissue in the human foot with reference to the histomorphology of the elastic fibre system. Acta Morphol Neerl Scand 22:313–323

  19. Kuhns JG (1949) Changes in elastic adipose tissue. J Bone Joint Surg Am 31:541–547

    Google Scholar 

  20. Liao H, Zakhaleva J, Chen W (2009) Cells and tissue interactions with glycated collagen and their relevance to delayed diabetic wound healing. Biomaterials 30:1689–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Natali AN, Forestiero A, Carniel EL (2009) Parameters identification in constitutive models for soft tissue mechanics. Russian J Biomech 13(4):29–39

    Google Scholar 

  22. Natali AN, Fontanella CG, Carniel EL (2010) Constitutive formulation and analysis of heel pad tissues mechanics. Med Eng Phys 32:516–522

    Article  CAS  PubMed  Google Scholar 

  23. Natali AN, Forestiero A, Carniel EL, Pavan PG, Dal Zovo C (2010) Investigation of foot plantar pressure: experimental and numerical analysis. Med Biol Eng Comput 48:1167–1174

    Article  CAS  PubMed  Google Scholar 

  24. Natali AN, Fontanella CG, Carniel EL, Miller-Young J (2011) Biomechanical behaviour of heel pad tissue. Experimental testing, constitutive formulation, and numerical modeling. Proc IME H J Eng Med 225:449–459

    Article  CAS  Google Scholar 

  25. Natali AN, Fontanella CG, Carniel EL (2012) A numerical model for investigating the mechanics of calcaneal fat pad region. J Mech Behav Biomed 5:216–223

    Article  CAS  Google Scholar 

  26. Ottani V, Raspanti M, Rugeri A (2001) Collagen structure and functional implications. Micron 32:251–260

    Article  CAS  PubMed  Google Scholar 

  27. Pai S, Ledoux WR (2010) The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue. J Biomech 43:1754–1760

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pai S, Ledoux WR (2011) The quasi-linear viscoelastic properties of diabetic and non-diabetic plantar soft tissue. Ann Biomed Eng 39:1517–1527

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pai S, Ledoux WR (2012) The shear mechanical properties of diabetic and non-diabetic plantar soft tissue. J Biomech 45(2):364–370

    Article  PubMed  PubMed Central  Google Scholar 

  30. Prichasuk S, Mulpruek P, Siriwongpairat P (1994) The heel pad compressibility. Clin Orthop Relat R 300:197–200

    Google Scholar 

  31. Rome K (1998) Mechanical properties of the heel pad: current theory and review of the literature. The Foot 8:179–185

    Article  Google Scholar 

  32. Sirimamilla AS (2009) Elaborate experimentation for mechanical characterization of human foot using inverse finite element analysis. Doctoral dissertation, Department of Mechanical Engineering, Case Western Reserve University, Cleveland

  33. Tietze A (1982) Concerning the architectural structure of the connective tissue in the human sole. Foot Ankle 2(5):252–259

    Article  CAS  PubMed  Google Scholar 

  34. Tong J, Lim CS, Goh OL (2003) Technique to study the biomechanical properties of the human calcaneal heel pad. Foot 13:83–91

    Article  Google Scholar 

  35. Wang Y-N, Lee K, Ledoux WR (2011) Histomorphological evaluation of diabetic and non-diabetic plantar soft tissue. Foot Ankle Int 32(8):802–810

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu JW, Dong RG, Schopper AW (2004) Analysis of effects of friction on the deformation behaviour of soft tissues in unconfined compression tests. J Biomech 37:147–155

    Article  PubMed  Google Scholar 

  37. Zhang M, Mak FT (1999) In vivo friction properties of human skin. Prosthet Orthot Int 23:135–141

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Giulia Fontanella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontanella, C.G., Nalesso, F., Carniel, E.L. et al. Biomechanical behavior of plantar fat pad in healthy and degenerative foot conditions. Med Biol Eng Comput 54, 653–661 (2016). https://doi.org/10.1007/s11517-015-1356-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1356-x

Keywords

Navigation