Skip to main content
Log in

Building a three-dimensional model of the upper gastrointestinal tract for computer simulations of swallowing

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We aimed to provide realistic three-dimensional (3D) models to be used in numerical simulations of peristaltic flow in patients exhibiting difficulty in swallowing, also known as dysphagia. To this end, a 3D model of the upper gastrointestinal tract was built from the color cryosection images of the Visible Human Project dataset. Regional color heterogeneities were corrected by centering local histograms of the image difference between slices. A voxel-based model was generated by stacking contours from the color images. A triangle mesh was built, smoothed and simplified. Visualization tools were developed for browsing the model at different stages and for virtual endoscopy navigation. As result, a computer model of the esophagus and the stomach was obtained, mainly for modeling swallowing disorders. A central-axis curve was also obtained for virtual navigation and to replicate conditions relevant to swallowing disorders modeling. We show renderings of the model and discuss its use for simulating swallowing as a function of bolus rheological properties. The information obtained from simulation studies with our model could be useful for physicians in selecting the correct nutritional emulsions for patients with dysphagia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ackerman M (1995) The Visible Human Project. National Library of Medicine and the National Institutes of Health. http://www.nlm.nih.gov/research/visible/visible_human.html. Accessed 13 Apr 2014

  2. Bar-Meir S (2000) A new endoscopic simulator. Endoscopy 32:898–900

    Article  CAS  PubMed  Google Scholar 

  3. Brito-de-la-Fuente E, Marquez J, Gastelum A, Ascanio G (2011) Towards a virtual endoscopic navigation system of the upper gastrointestinal tract for the study of dysphagia. In: 20th Dysphagia Research Society annual meeting, San Antonio, Texas

  4. Choi C, Han H, An B, Kim J (2006) Development of a surgical simulator for laparoscopic esophageal procedures. Conf Proc IEEE Eng Med Biol Soc 28:819–822

    Google Scholar 

  5. Communication from the ASGE Training Committee (2012) Principles of training in GI endoscopy. Gastrointest Endosc 75(2):231–235

    Article  Google Scholar 

  6. Ekberg O, Olsson R, Sundgren-Borgström P (1988) Relation of bolus size and pharyngeal swallow. Dysphagia 3:69–72

    Article  CAS  PubMed  Google Scholar 

  7. Fantry G, McShane M, Beale S, Forman J, Raczek J, Nirenburg S, Jarrell B (2006) The virtual esophagus: an interactive model of esophageal physiology, pathophysiology, and simulation of esophageal motility disorders. Gastroenterology 130:A736

    Google Scholar 

  8. Feulner J, Zhou SK, Huber M, Cavallaro A, Hornegger J, Comanicium D (2010) Model-based esophagus segmentation from CT scans using a spatial probability map. Med Image Comput Assist Interv Lect Notes Comput Sci 13(Pt 1):95–102

    Google Scholar 

  9. Gastelum A, Mosso JL, Arambula F, Marquez J (2004) Construction of a model of the upper gastrointestinal system for the simulation of gastroesophagoendoscopic procedures. AIP Conf Proc 724:196–200

    Article  Google Scholar 

  10. Gastelum A, Mosso JL, Marquez J (2006) Modeling interactions with a computer representation of the upper gastrointestinal system. IEEE Annu Int Conf (Eng Med Biol Soc) 28:4412–4415

    Google Scholar 

  11. Gastelum A, Mata L, Marquez J (2014) Model construction and navigation of the esophagus and the oropharinx for virtual gastroendoscopy and computer simulation of peristaltic flow. Internal technical report (submitted). Center of Applied Sciences and Technological Development, National Autonomous University of Mexico, Mexico

  12. Heckbert PS (1990) A seed fill algorithm. In: Glassner A (ed) Graphics gems. Academic Press Inc, San Diego, pp 275–277

    Chapter  Google Scholar 

  13. Hochberger J, Maiss J, Hahn EG (2002) The use of simulators for training in GI endoscopy. Endoscopy 34:727–729

    Article  CAS  PubMed  Google Scholar 

  14. Kerfoot E, Lamata P, Niederer S, Hose R, Spaan J, Smith N (2013) Share and enjoy: anatomical models database—generating and sharing cardiovascular model data using web services. Med Biol Eng Comput 51:1181–1190

    Article  PubMed  Google Scholar 

  15. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution surface reconstruction algorithm. Comput Graph 21:163–169

    Article  Google Scholar 

  16. Marquez J, Schmitt F (1996) Radiometric correction of color cryosection images for three-dimensional segmentation of fine structures. In: Höhne K, Kikinis R (eds), Lecture notes on computer science 1131: visualization in biomedical computing, Springer, pp 117–122

  17. Marquez J, Schmitt F (2000) Radiometric homogenization of the color images from the Visible-Human-Project lungs for 3-d segmentation of blood vessels. Comput Med Imaging Graph 23:181–191

    Article  Google Scholar 

  18. Meng Y, Rao MA, Datta AK (2005) Computer simulation of the pharyngeal bolus transport of Newtonian and non-Newtonian fluids. Trans IChemE C Food Bioprod Proc 83:297–305

    Article  Google Scholar 

  19. Mizunuma H, Sonomura M, Shimokasa K, Ogoshi H, Nakamura S, Tayama N (2009) Numerical modeling and simulation on the swallowing of jelly. J Texture Stud 40:406–426

    Article  Google Scholar 

  20. Pabst R, Weiglein AH (2001) Sobotta atlas of human anatomy. In: 21th ed, Lippincott Williams & Wilkins, vol 1, pp 120–140, vol 2, pp 106–107, 123–125, 130–134

  21. Padilla MA, Altamirano-del Monte F, Arambula-Cosio F, Marquez J (2007) Mechatronic resectoscope emulator for a surgery simulation training system of the prostate. Proc Conf IEEE Eng Med Biol Soc 29:1750–1753

    Google Scholar 

  22. Rogers C (2003) Minimally invasive surgery yields benefits. The American Academy of Orthopedic Surgeons. http://www2.aaos.org/acadnews/2003news/a8-9.htm. Accessed 13 Apr 2014

  23. Rohe JW, Lütjen-Drecoll, E Yokochi C (2010) Color Atlas of anatomy: a photographic study of the human body. In: 7th Ed, Lippincott Williams & Wilkins

  24. Salinas M, Vicente W, Brito E, Gallegos C, Márquez J, Ascanio G (2014) Early numerical studies on the peristaltic flow through the pharynx. J Texture Stud 45:155–163

    Article  Google Scholar 

  25. Sarraf-Shirazi S, Birjandi AH, Moussavi Z (2012) Characteristics of the swallowing sounds recorded in the ear, nose and on trachea. Med Biol Eng Comput 50:885–890

    Article  PubMed  Google Scholar 

  26. Sarraf-Shirazi S, Baril JF, Moussavi Z (2014) Noninvasive and automatic diagnosis of patients at high risk of swallowing aspiration. Med Biol Eng Comput 52:459–465

    Article  PubMed  Google Scholar 

  27. Schiller K, Cockel R, Hunt R, Warren B (2002) Atlas of gastrointestinal endoscopy and related pathology, 2nd edn. Blackwell Publishing, Oxford

    Google Scholar 

  28. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13:146–165

    Article  Google Scholar 

  29. Spitzer V, Ackerman M, Scherzinger A, Whitlock D (1996) The visible human male: a technical report. J Am Med Inform Assoc 3(2):118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Warnecke T, Teismann I, Oelenberg S, Hamacher C, Ringelstein EB, Schäbitz WR, Dziewas R (2009) Towards a basic endoscopic evaluation of swallowing in acute stroke–identification of salient findings by the inexperienced examiner. BMC Med Educ 9:13

    Article  PubMed  PubMed Central  Google Scholar 

  31. Waye JD (2000) Teaching endoscopy in the new millennium. Gastrointest Endosc 52:447–448

    Article  CAS  Google Scholar 

  32. Weese J, Groth A, Nickisch H, Barschdorf H, Weber FM, Velut J, Castro M, Toumoulin C, Coatrieux JL, De Craene M, Piella G, Tobón-Gomez C, Frangi AF, Barber DC, Valverde I, Shi Y, Staicu C, Brown A, Beerbaum P, Hose DR (2013) Generating anatomical models of the heart and the aorta from medical images for personalized physiological simulations. Med Biol Eng Comput 51:1209–1219

    Article  CAS  PubMed  Google Scholar 

  33. Yagou H, Ohtake Y Belyaev A (2002) Mesh smoothing via mean and median filtering applied to face normals. In: Proceedings of the Geometric Modeling and Processing, 2002. IEEE, pp 124–131

  34. Yassi R, Cheng LK, Al-Ali S, Smith NP, Pullan AJ, Windsor JA (2004) An anatomically based mathematical model of the gastroesophageal junction. Proc IEEE Annu Int Conf (Eng Med Biol Soc) 26:635–638

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Fresenius-Kabi Deutschland, GmbH, Bad Homburg, Germany, for financial support, the gastroenterologist José Mosso and the Clínica Dr. Alberto Pisanti Hospital in Mexico City, for valuable supervision and Dr. Alma Ranzon from Clínica 25 of the IMSS, for providing CAT scans. We also acknowledge the School of Medicine and the Nutrition Institute of the National Autonomous University of Mexico, to let us examine plastic models of the upper GI tract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Marquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gastelum, A., Mata, L., Brito-de-la-Fuente, E. et al. Building a three-dimensional model of the upper gastrointestinal tract for computer simulations of swallowing. Med Biol Eng Comput 54, 525–534 (2016). https://doi.org/10.1007/s11517-015-1338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1338-z

Keywords

Navigation