Skip to main content

Advertisement

Log in

Mammogram segmentation using maximal cell strength updation in cellular automata

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Breast cancer is the most frequently diagnosed type of cancer among women. Mammogram is one of the most effective tools for early detection of the breast cancer. Various computer-aided systems have been introduced to detect the breast cancer from mammogram images. In a computer-aided diagnosis system, detection and segmentation of breast masses from the background tissues is an important issue. In this paper, an automatic segmentation method is proposed to identify and segment the suspicious mass regions of mammogram using a modified transition rule named maximal cell strength updation in cellular automata (CA). In coarse-level segmentation, the proposed method performs an adaptive global thresholding based on the histogram peak analysis to obtain the rough region of interest. An automatic seed point selection is proposed using gray-level co-occurrence matrix-based sum average feature in the coarse segmented image. Finally, the method utilizes CA with the identified initial seed point and the modified transition rule to segment the mass region. The proposed approach is evaluated over the dataset of 70 mammograms with mass from mini-MIAS database. Experimental results show that the proposed approach yields promising results to segment the mass region in the mammograms with the sensitivity of 92.25 % and accuracy of 93.48 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alfonso RD, Asoke KN (2009) Toward breast cancer diagnosis based on automated segmentation of masses in mammograms. Pattern Recogn 42:1138–1148

    Article  Google Scholar 

  2. American Cancer Society, Breast Cancer Facts and Figures 2013–2014: American Cancer Society, Atlanda. http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-042725.pdf). Accessed 22 Nov 2014

  3. Chun-Chu J, Shyr-Shen Y (2015) Automatic detection of abnormal mammograms in mammographic images. Expert Syst Appl 42(6):3048–3055

    Article  Google Scholar 

  4. Demirel H, Anbarjafari G (2008) Pose invariant face recognition using probability distribution functions in different color channels. IEEE Signal Process Lett 15:537–540

    Article  Google Scholar 

  5. DeSantis C, Ma J, Bryan L, Jemal A (2014) Breast cancer statistics, 2013. CA Cancer J Clin 64:52–62

    Article  PubMed  Google Scholar 

  6. Don S, Eumin C, Dugki M (2011) Breast mass segmentation in digital mammography using graph cuts, convergence and hybrid information technology. Commun Comput Inf Sci 206:88–96

    Google Scholar 

  7. Dubey RB, Hanmandlu M, Gupta SK (2010) A comparison of two methods for the segmentation of masses in the digital mammograms. Comput Med Imaging Graph 34:185–191

    Article  CAS  PubMed  Google Scholar 

  8. Fei M, Bajger M, Bottema MJ (2009) Automatic mass segmentation based on adaptive pyramid and sublevel set analysis. In: Proceedings of the international conference on digital image computing: techniques and applications, Melbourne, pp 236–241

  9. Ferrari RJ, Rangayyan RM, Borges RA, Frere AF (2004) Segmentation of the fibro-glandular disc in mammograms using Gaussian mixture modeling. Med Biol Eng Comput 42(3):378–387

    Article  CAS  PubMed  Google Scholar 

  10. Ferrari RJ, Frere AF, Rangayyan RM, Desautels JEL, Borges RA (2004) Identification of the breast boundary in mammograms using active contour models. Med Biol Eng Comput 42(2):201–208

    Article  CAS  PubMed  Google Scholar 

  11. Ganesh NS, Rahul D, Jyotsana S, Piush S, Sharma KK (2010) Various types and management of breast cancer: an overview. J Adv Pharm Technol Res 1(2):109–126

    Google Scholar 

  12. Guillaume K, Alain T, Martin K (2007) Automated detection of masses in mammograms by local adaptive thresholding. Comput Biol Med 37(1):37–48

    Article  Google Scholar 

  13. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  14. Huang T, Yang G, Tang G (1979) A fast two-dimensional median filtering algorithm. IEEE Trans Acoust Speech Signal Process 27(1):13–18

    Article  Google Scholar 

  15. Homero S, Vivian TS, Michele FA (2008) Segmentation technique for detecting suspect masses in dense breast digitized images as a tool for mammography CAD schemes. In: Proceedings of the ACM symposium on applied computing, New York, pp 1333–1337

  16. Jawad N, Sameem AK, Nagi F, Ahmed SK (2010) Automated breast profile segmentation for ROI detection using digital mammograms. In: IEEE EMBS conference on biomedical engineering and sciences (IECBES 2010), Kuala Lumpur, Malaysia

  17. Jun L, Jianxun C, Xiaoming L, Lei C, Jinshan T, Youping D (2011) Mass segmentation using a combined method for cancer detection. BMC Systems Biology 5(Suppl 3):S6:1–S6:9

    Google Scholar 

  18. Kai H, Xieping G, Fei L (2011) Detection of suspicious lesions by adaptive thresholding based on multiresolution analysis in mammograms. IEEE Trans Instrum Meas 60(2):462–472

    Article  Google Scholar 

  19. Karthikeyan G, Rajendra AU, Kuang CC, Lim CM, Thomas AK (2013) Pectoral muscle segmentation: a review. Comput Methods Programs Biomed 110(1):48–57

    Article  Google Scholar 

  20. Karthikeyan G, Rajendra AU, Chua KC, Lim CM, Thomas AK, Kwan-Hoong N (2013) Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng 6:77–98

    Article  Google Scholar 

  21. Kostas H, Serafim NE, Nicos M, Aggelos KK (1998) Hybrid image segmentation using watersheds and fast region merging. IEEE Trans Image Process 7(12):1684–1699

    Article  Google Scholar 

  22. Kozegar E, Soryani M, Minaei B, Domingues I (2013) Assessment of a novel mass detection algorithm in mammograms. J Cancer Res Ther 9(4):592–600

    Article  PubMed  Google Scholar 

  23. Li L, Qian W, Clarke LP, Clark RA, Thomas JA (1999) Improving mass detection by adaptive and multiscale processing in digitized mammograms. Proc SPIE Med Imaging Image Process 3661:490–498

    Google Scholar 

  24. Mohammed JI (2009) Computer-aided detection and classification of masses in digitized mammograms. Research Centre for Integrated Microsystems, University Of Windsor

  25. Mohammed JI, Majid A, Maher ASA (2010) An efficient automatic mass classification method in digitized mammograms using artificial neural network. IJAIA 1(3):1–3

    Article  Google Scholar 

  26. Nafiza S, Harsa AMS, Umi KN, Ibrahim LS (2013) Computer aided detection of breast density and mass, and visualization of other breast Anatomical regions on mammograms using graph cuts. Comput Math Methods Med 2013:1–13

    Google Scholar 

  27. Pereira DC, Ramos RP, Nascimento MZ (2014) Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm. Comput Methods Programs Biomed 114(1):88–101

    Article  PubMed  Google Scholar 

  28. Pizer SM, Amburn EP (1987) Adaptive histogram equalization and its variations. Comput Vis Grpah Image Process 39:355–368

    Article  Google Scholar 

  29. Rafael CG, Richard EW (2002) Digital Image Processing, 2nd edn. Pearson Education Pte. Ltd., Delhi

    Google Scholar 

  30. Rahimeh R, Mehdi J, Shohreh K, Peiman K (2015) Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst Appl 42(3):990–1002

    Article  Google Scholar 

  31. Randy PB, Thomas FR, Steven KR (2000) Gabor filtering for improved microcalcification detection in digital mammograms. Patent US 6137898 A

  32. Robin NS (2002) Image-processing techniques for tumor detection, 1st edn. CRC Press, ISBN-13:978-0824706371

  33. Rosin P (2006) Training cellular automata for image processing. IEEE Trans Image Process 15(7):2076–2087

    Article  PubMed  Google Scholar 

  34. Saidin N, Ngah UK, Sakim H, Ding NS, Mok KH (2009) Density based breast segmentation for mammograms using graph cut techniques. In: IEEE region 10 conference TENCON 2009, Singapore, pp 1–5

  35. Sampaio WB, Diniz EM, Silva AC, Paiva AC, Gattass M (2011) Detection of masses in mammogram images using CNN, geostatistic functions and SVM. Comput Biol Med 41:653–664

    Article  PubMed  Google Scholar 

  36. Sartra W (2011) Cellular automata for medical image processing. Cellular automata: innovative modelling for science and engineering, chapter 19, 395–410. Alejandro S (ed) InTech Publisher. ISBN:978-953-307-172-5

  37. Sheshadri HS, Kandaswamy A (2005) Detection of breast cancer tumor based on morphological watershed algorithm. Int J Graph Vis Image Process 5(5):17–21

    Google Scholar 

  38. Shi J, Sahiner B, Chan HP, Ge J, Hadjiiski L, Helvie MA, Nees A, Wu YT, Wei J, Zhou C, Zhang Y, Cui J (2008) Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys 35(1):280–290

    Article  PubMed Central  PubMed  Google Scholar 

  39. Subodh S, Neeraj S, Singh SK, Srivastava R (2014) A combined approach for the enhancement and segmentation of mammograms using modified fuzzy C-means method in wavelet domain. J Med Phys 39(3):169–183

    Article  Google Scholar 

  40. Suckling J et al (1994) The mammographic image analysis society digital mammogram database. Exerpta Med Int Congr Ser 1069:375–378

    Google Scholar 

  41. Suckling J et al (1994) The mammographic image analysis society digital mammogram database. http://peipa.essex.ac.uk/info/mias.html

  42. Timp S, Karssemeijer N (2004) A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography. Med Phys 31(5):958–971

    Article  PubMed  Google Scholar 

  43. Tolga B, Adil A, Pinar B, Oguz D (2013) Breast mass contour segmentation algorithm in digital mammograms. Comput Methods Programs Biomed 110:150–159

    Article  Google Scholar 

  44. Vadivel A, Surendiran B (2013) A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories. Comput Biol Med 43:259–267

    Article  CAS  PubMed  Google Scholar 

  45. Vezhnevets V, Konouchine V (2005) GrowCut-interactive multi-label ND image segmentation by cellular automata. In: Proceedings of Graphicon, pp 150–156

  46. Wanga Y, Tao D, Gao X, Li X, Wanga B (2011) Mammographic mass segmentation: embedding multiple features in vector-valued levelset in ambiguous regions. Pattern Recogn 44:1903–1915

    Article  Google Scholar 

  47. Xiangying W, Wei-dong X, Lihua L, Guoliang S, Juan Z (2011) An interactive segmentation method using graph cuts for mammographic masses. In: 5th international conference on bioinformatics and biomedical engineering, (iCBBE), Wuhan, pp 1–4

  48. Xiangying W, Weidong X, Lihua L, Wei L, Bin Z (2012) A multiscale approach to mass segmentation using graph cuts. In: Proceedings of SPIE 8315, medical imaging, computer-aided diagnosis. 831526. doi:10.1117/12.911118

  49. Xin H, Ye S, Shun-ren X (2012) Automatic mass segmentation on mammograms combining random walks and active contour. J Zhejiang Univ Sci C 13(9):635–648

    Article  Google Scholar 

  50. Xu W, Xia S, Duan H, Xiao M (2006) Segmentation of mass in mammograms using a novel intelligent algorithm. Int J Pattern Recognit Artif Intell 20(2):255–270

    Article  Google Scholar 

  51. Yachun P, Li L, Wenyong H, Yanxia P, Lizhi L, Yuanzhi S (2012) Computerized segmentation and characterization of breast lesions in dynamic contrast-enhanced MR images using fuzzy c-menas clustering and snake algorithm. Computational and mathematical models in medicine. Hindawi Publishing Corporation, Cairo, pp 1–10

    Google Scholar 

  52. Zhang XP, Desai MD (2001) Segmentation of bright targets using wavelets and adaptive thresholding. IEEE Trans Image Process 10(7):1020–1030

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dinesh Peter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anitha, J., Peter, J.D. Mammogram segmentation using maximal cell strength updation in cellular automata. Med Biol Eng Comput 53, 737–749 (2015). https://doi.org/10.1007/s11517-015-1280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1280-0

Keywords

Navigation