Skip to main content
Log in

Application of higher-order spectra for automated grading of diabetic maculopathy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adarsh P (2013) A novel approach for diagnosis and severity grading of diabetic maculopathy. In: 2013 international conference on advances in computing, communications and informatics (ICACCI), pp 1230–1235

  2. Ahmad Fadzil MH, Izhar LI, Nugroho H, Nugroho HA (2011) Analysis of retinal fundus images for grading of diabetic retinopathy severity. Med Biol Eng Comput 49(6):693–700

    Article  CAS  PubMed  Google Scholar 

  3. Akram MU, Akhtar M, Javed MY (2012) An automated system for the grading of diabetic maculopathy in fundus images. In: Huang T, Zeng Z, Li C, Leung CS (eds) Neural information processing. Springer, pp 36–43

  4. Ang MH, Acharya UR, Sree SV, Lim T-C, Suri JS (2011) Computer-based identification of diabetic maculopathy stages using fundus images. In: Multi modality state-of-the-art medical image segmentation and registration methodologies. Springer, pp 377–399

  5. Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G (2010) Glaucoma risk index: automated glaucoma detection from color fundus images. Med Image Anal 14(3):471–481

    Article  PubMed  Google Scholar 

  6. Cai D, He X, Han J (2008) Srda: an efficient algorithm for large-scale discriminant analysis. IEEE Trans Knowl Data Eng 20(1):1–12

    Article  Google Scholar 

  7. Chandran V, Elgar SL (1992) Position, rotation, and scale invariant recognition of images using higher-order spectra. In: IEEE international conference on acoustics, speech, and signal processing (ICASSP92). 5:213

  8. Chandran V, Elgar SL (1993) Pattern recognition using invariants defined from higher order spectra-one-dimensional inputs. IEEE Trans Signal Proces 41(1):205–212

    Article  Google Scholar 

  9. Chandran V, Steve E (1991) Shape discrimination using invariants defined from higher-order spectra. In: International conference on acoustics, speech, and signal processing ICASSP91, pp 3105–3108

  10. Chandran V, Carswell B, Boashash B, Elgar S (1997) Pattern recognition using invariants defined from higher order spectra: 2-d image inputs. IEEE Trans Image Proces 6(5):703–712

    Article  CAS  Google Scholar 

  11. Chowriappa P, Dua S, Acharya UR, Mookiah MRK (2013) Ensemble selection for feature-based classification of diabetic maculopathy images. Comput Biol Med 43(12):2156–2162

    Article  PubMed  Google Scholar 

  12. Chua KC, Chandran V, Acharya UR, Ng EYK, Caroline C, Manjunath G, Lim CM, Yan JMT, Gracielynne F, Suri JS (2008a) Computer-based detection of diabetes maculopathy stages. In: Acharya UR, Ng EYK, Suri JS (eds) Image modelling of the human eye. Artech House Inc, Norwood

    Google Scholar 

  13. Chua KC, Chandran V, Acharya UR, Lim CM (2008b) Cardiac state diagnosis using higher order spectra of heart rate variability. J Med Eng Technol 32(2):145–155

    Article  CAS  PubMed  Google Scholar 

  14. Chua KC, Chandran V, Acharya UR, Lim CM (2009) Analysis of epileptic eeg signals using higher order spectra. J Med Eng Technol 33(1):42–50

    Article  CAS  PubMed  Google Scholar 

  15. Chua KC, Chandran V, Acharya UR, Lim CM (2011) Application of higher order spectra to identify epileptic EEG. J Med Syst 35(6):1563–1571

    Article  PubMed  Google Scholar 

  16. Chua CK, Mookiah MRK, Koh JEW, Acharya UR, Lim CM, Laude A, Ng EYK et al (2013) Automated diagnosis of maculopathy stages using texture features. Int J Integr Care 13:1–2

    Google Scholar 

  17. Deepak KS, Sivaswamy J (2012) Automatic assessment of macular edema from color retinal images. IEEE Trans Med Imaging 31(3):766–776

    Article  PubMed  Google Scholar 

  18. Diep TM, Tsui I (2013) Risk factors associated with diabetic macular edema. Diabetes Res Clin Pract 100(3):298–305

    Article  CAS  PubMed  Google Scholar 

  19. Duda RO, Hart PE, Stork DG (2012) Pattern classification. Wiley, New York

    Google Scholar 

  20. Fleming AD, Goatman KA, Philip S, Prescott GJ, Sharp PF, Olson JA (2010) Automated grading for diabetic retinopathy: a large-scale audit using arbitration by clinical experts. Br J Ophthalmol 94(12):1606–1610

    Article  PubMed  Google Scholar 

  21. Foracchia M, Ruggeri A (2004) Automatic estimation of endothelium cell density in donor corneas by means of fourier analysis. Med Biol Eng Comput 42(5):725–731

    Article  CAS  PubMed  Google Scholar 

  22. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  Google Scholar 

  23. Geoff D, Johnson MJ, Wiers MD (2010) Measurement of retinal vascular tortuosity and its application to retinal pathologies. Med Biol Eng Comput 48(1):87–95

    Article  Google Scholar 

  24. Gun AM, Gupta MK, Dasgupta B (2008) Fundamentals of statistics (Vol I & II), 4th edn. World Press Private Ltd, Kolkata

  25. Harney F (2006) Diabetic retinopathy. Medicine 34(3):95–98. ISSN 1357–3039

  26. Hunter A, Lowell JA, Ryder B, Basu A, Steel D (2011) Automated diagnosis of referable maculopathy in diabetic retinopathy screening. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pp. 3375–3378

  27. International Diabetes Federation (2013) Idf diabetes atlas. http://www.idf.org/sites/default/files/EN_6E_Atlas_Full_0.pdf. Accessed 31 Sep 2014

  28. Khademi A, Krishnan S (2007) Shift-invariant discrete wavelet transform analysis for retinal image classification. Med Biol Eng Comput 45(12):1211–1222

    Article  PubMed  Google Scholar 

  29. Khushaba RN, Sarath K, Sara L, Gamini D (2011) Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans Biomed Eng 58(1):121–131

    Article  PubMed  Google Scholar 

  30. Kiire CA, Porta M, Chong V (2013) Medical management for the prevention and treatment of diabetic macular edema. Surv Ophthalmol 58(5):459–465

    Article  PubMed  Google Scholar 

  31. Li H, Chutatape O (2004) Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51(2):246–254

    Article  PubMed  Google Scholar 

  32. Lim ST, Zaki WMDW, Hussain A, Lim SL, Kusalavan S (2011) Automatic classification of diabetic macular edema in digital fundus images. In: 2011 IEEE colloquium on humanities, science and engineering (CHUSER), pp. 265–269

  33. Luca G, Fabrice M, Karnowski TP, Li Y, Garg S, Tobin KW, Chaum E (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 16(1):216–226

    Article  Google Scholar 

  34. Mendel JM (1991) Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proceed IEEE 79(3):278–305

    Article  Google Scholar 

  35. Mookiah MRK, Oliver F (2013) Automated glaucoma detection using hybrid feature extraction in retinal fundus images. J Mech Med Biol 13(01):1350011(1)–1350011(21)

    Google Scholar 

  36. Mookiah MRK, Acharya UR, Chua CK, Lim CM, Ng EYK, Laude A (2013a) Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med 43(12):2136–2155

    Article  PubMed  Google Scholar 

  37. Mookiah MRK, Acharya UR, Martis RJ, Chua CK, Lim CM, Ng EYK, Laude A (2013b) Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowl Based Syst 39:9–22

    Article  Google Scholar 

  38. Nayak J, Bhat PS, Acharya UR (2009) Automatic identification of diabetic maculopathy stages using fundus images. J Med Eng Technol 33(2):119–129

    Article  CAS  PubMed  Google Scholar 

  39. Neelakshi B, Grigorian RA, Tutela A, Zarbin MA (2009) Diabetic macular edema: pathogenesis and treatment. Survey Ophthalmol 54(1):1–32

    Article  Google Scholar 

  40. Nikias CL, Mendel JM (1993) Signal processing with higher-order spectra. IEEE Signal Proces Mag 10(3):10–37

    Article  Google Scholar 

  41. Noronha KP, Acharya UR, Nayak KP, Martis RJ, Bhandary SV (2014) Automated classification of glaucoma stages using higher order cumulant features. Biomed Signal Proces Control 10:174–183

    Article  Google Scholar 

  42. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. ISSN 0162–8828

  43. Pisano ED, Zong S, Hemminger BM, DeLuca M, Johnston RE, Muller K, Braeuning MP, Pizer SM (1998) Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J Digital Imaging 11(4):193–200

    Article  CAS  Google Scholar 

  44. Radon J (1986) On the determination of functions from their integral values along certain manifolds. IEEE Trans Med Imaging 5(4):170–176

    Article  CAS  PubMed  Google Scholar 

  45. Siddalingaswamy PC, Gopalakrishna PK (2010) Automatic grading of diabetic maculopathy severity levels. In: 2010 International conference on systems in medicine and biology (ICSMB), pp 331–334

  46. Swami A, Mendel JM, Nikias CLM (1998) Higher-order spectral analysis toolbox: for use with MATLAB: user’s guide, vol 2. Mathworks Inc., pp 1–258

  47. Tariq A, Akram MU, Shaukat A, Khan SA (2013) Automated detection and grading of diabetic maculopathy in digital retinal images. J Digit Imaging 26(4):803–812

    Article  PubMed Central  PubMed  Google Scholar 

  48. ter Haar F (2005) Automatic localization of the optic disc in digital colour images of the human retina. PhD thesis, Citeseer

  49. Vapnik V (2000) The nature of statistical learning theory. Springer, Berlin

    Book  Google Scholar 

  50. Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen S-J, Dekker JM, Fletcher A, Grauslund J et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564

    Article  PubMed Central  PubMed  Google Scholar 

  51. Zhuo Z, Keong KC, Jiang L, Lui CCY, Tin A, Tien W (2012) Automatic glaucoma diagnosis with mRMR based feature selection. J Biom Biostat S7:1–8

    Google Scholar 

Download references

Acknowledgments

Authors thank Social Innovation Research Fund (Project ID: T1202), Singapore, for providing grant for this research. Also authors would like to thank National Medical Research Council (NMRC/CSA/045/2012) and National Healthcare Group Clinician Scientist Career Scheme/12006 grant. We express our sincere thanks to Mr. Kevin Noronha, Manipal University, Manipal, India, for sharing the images for this study.

Conflict of interest

The authors do not have any related conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu Rama Krishnan Mookiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mookiah, M.R.K., Acharya, U.R., Chandran, V. et al. Application of higher-order spectra for automated grading of diabetic maculopathy. Med Biol Eng Comput 53, 1319–1331 (2015). https://doi.org/10.1007/s11517-015-1278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1278-7

Keywords

Navigation