Skip to main content

Advertisement

Log in

Adaptive common average filtering for myocontrol applications

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The use of electromyography (EMG) for the control of upper-limb prostheses has received great interest in neurorehabilitation engineering since decades. Important advances have been performed in the development of machine learning algorithms for myocontrol. This paper describes a novel adaptive filter for EMG preprocessing to be applied as conditioning stage for optimal subsequent information extraction. The aim of this filter is to improve both the quality (signal-to-noise ratio) and the selectivity of the EMG recordings. The filter is based on the classic common average reference (CAR), often used in EEG processing. However, while CAR is stationary, the proposed filter, which is referred to as adaptive common average reference (ACAR), is signal-dependent and its spatial transfer function is adapted over time. The ACAR filter is evaluated in this study for noise reduction and selectivity. Furthermore, it is proven that its application improves the performance of both pattern recognition and regression methods for myoelectric control. It is concluded that the proposed novel filter for EMG conditioning is a useful preprocessing tool in myocontrol applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Broman H, Bilotto G, De Luca CJ (1985) A note on the noninvasive estimation of muscle fiber conduction velocity. IEEE Trans Biomed Eng 32:341–344. doi:10.1109/TBME.1985.325550

    Article  CAS  PubMed  Google Scholar 

  2. Bunderson NE, Kuiken TA (2012) Quantification of feature space changes with experience during electromyogram pattern recognition control. IEEE Trans Neural Syst Rehabil Eng 20:239–246. doi:10.1109/TNSRE.2011.2182525

    Article  PubMed  Google Scholar 

  3. De Luca CJ, Merletti R (1988) Surface myoelectric signal cross-talk among muscles of the leg. Electroencephalogr Clin Neurophysiol 69:568–575. doi:10.1016/0013-4694(88)90169-1

    Article  PubMed  Google Scholar 

  4. Disselhorst-Klug C, Silny J, Rau G (1997) Improvement of spatial resolution in surface-EMG: a theoretical and experimental comparison of different spatial filters. IEEE Trans Biomed Eng 44:567–574. doi:10.1109/10.594897

    Article  CAS  PubMed  Google Scholar 

  5. Fougner A, Stavdahl O, Kyberd PJ et al (2012) Control of upper limb prostheses: terminology and proportional myoelectric control-a review. IEEE Trans Neural Syst Rehabil Eng 20:663–677. doi:10.1109/TNSRE.2012.2196711

    Article  PubMed  Google Scholar 

  6. Hahne JM, Graimann B, Müller K-R (2012) Spatial filtering for robust myoelectric control. IEEE Trans Biomed Eng 59:1436–1443. doi:10.1109/TBME.2012.2188799

    Article  PubMed  Google Scholar 

  7. Hahne JM, Rehbaum H, Biessmann F et al (2012) Simultaneous and proportional control of 2D wrist movements with myoelectric signals. 2012 IEEE International workshop on machine learning and signal processing, pp 1–6

  8. Hargrove LJ, Li G, Englehart KB, Hudgins BS (2009) Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control. IEEE Trans Biomed Eng 56:1407–1414. doi:10.1109/TBME.2008.2008171

    Article  PubMed  Google Scholar 

  9. Hudgins B, Parker P, Scott RN (1993) A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40:82–94. doi:10.1109/10.204774

    Article  CAS  PubMed  Google Scholar 

  10. Jiang N, Dosen S, Muller K-R, Farina D (2012) Myoelectric control of artificial limbs—is there a need to change focus? [in the spotlight]. IEEE Signal Process Mag 29:152–160. doi:10.1109/MSP.2012.2203480

    Article  Google Scholar 

  11. Jiang N, Rehbaum H, Vujaklija I et al (2013) Intuitive, online, simultaneous and proportional myoelectric control over two degrees of freedom in upper limb amputees. IEEE Trans Neural Syst Rehabil Eng. doi:10.1109/TNSRE.2013.2278411

  12. Kinder MV, van Waalwijk van Doorn ES, Gommer ED, Janknegt RA (1998) A non-invasive method for bladder electromyography in humans. Arch Physiol Biochem 106:2–11. doi:10.1076/apab.106.1.2.4393

    Article  CAS  PubMed  Google Scholar 

  13. Koh TJ, Grabiner MD (1993) Evaluation of methods to minimize cross talk in surface electromyography. J Biomech 26(Suppl 1):151–157

    Article  PubMed  Google Scholar 

  14. McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103:386–394. doi:10.1016/S0013-4694(97)00022-2

    Article  CAS  PubMed  Google Scholar 

  15. Merletti R, Aventaggiato M, Botter A et al (2010) Advances in surface EMG: recent progress in detection and processing techniques. Crit Rev Biomed Eng 38:305–345

    Article  PubMed  Google Scholar 

  16. Mewett DT, Nazeran H, Reynolds KJ (2001) Removing power line noise from recorded EMG. In: IEEE 2001 proceedings of 23rd Annual international conference of IEEE engineering, medicine, biological society, pp 2190–2193

  17. Ramoser H, Müller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8:441–446

    Article  CAS  PubMed  Google Scholar 

  18. Rehbaum H, Jiang N, Paredes L et al (2012) Real time simultaneous and proportional control of multiple degrees of freedom from surface EMG: preliminary results on subjects with limb deficiency. Conf Proc IEEE Eng Med Biol Soc 2012:1346–1349. doi:10.1109/EMBC.2012.6346187

    PubMed  Google Scholar 

  19. Van Vugt J, Van Dijk J (2001) A convenient method to reduce crosstalk in surface EMG. Clin Neurophysiol 112:583–592

    Article  PubMed  Google Scholar 

  20. Zecca M, Micera S, Carrozza MC, Dario P (2002) Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 30:459–485. doi:10.1615/CritRevBiomedEng.v30.i456.80

    Article  CAS  PubMed  Google Scholar 

  21. Zhou P, Lock B, Kuiken TA (2007) Real time ECG artifact removal for myoelectric prosthesis control. Physiol Meas 28:397–413. doi:10.1088/0967-3334/28/4/006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is financed by the European Commission via the Industrial Academia Partnerships and Pathways (IAPP), Grant No. 251555 (AMYO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Farina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehbaum, H., Farina, D. Adaptive common average filtering for myocontrol applications. Med Biol Eng Comput 53, 179–186 (2015). https://doi.org/10.1007/s11517-014-1215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1215-1

Keywords

Navigation