Skip to main content
Log in

The effect of energy spectrum change on DNA damage in and out of field in 10-MV clinical photon beams

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The aim of this study was to quantify the DNA damage induced in a clinical megavoltage photon beam at various depths in and out of the field. MCNPX was used to simulate 10 × 10 and 20 × 20 cm2 10-MV photon beams from a clinical linear accelerator. Photon and electron spectra were collected in a water phantom at depths of 2.5, 12.5 and 22.5 cm on the central axis and at off-axis points out to 10 cm. These spectra were used as an input to a validated microdosimetric Monte Carlo code, MCDS, to calculate the RBE of induced DSB in DNA at points in and out of the primary radiation field at three depths. There was an observable difference in the energy spectra for photons and electrons for points in the primary radiation field and those points out of field. In the out-of-field region, the mean energy for the photon and electron spectra decreased by a factor of about six and three from the in-field mean energy, respectively. Despite the differences in spectra and mean energy, the change in RBE was <1 % from the in-field region to the out-of-field region at any depth. There was no significant change in RBE regardless of the location in the phantom. Although there are differences in both the photon and electron spectra, these changes do not correlate with a change in RBE in a clinical MV photon beam as the electron spectra are dominated by electrons with energies >20 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P et al (2003) GEANT4-a simulation toolkit. Nucl Instrum Methods A 506:250–303

    Article  CAS  Google Scholar 

  2. Baro J, Sempau J, Fernández-Varea J, Salvat F (1995) PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methosa A 100:31–46

    Article  CAS  Google Scholar 

  3. Bernhardt P, Friedland W, Meckbach R, Jacob P, Paretzke HG (2002) Monte Carlo simulation of DNA damage by low LET radiation using inhomogeneous higher order DNA targets. Radiat Prot Dosim 99:203–206

    Article  CAS  Google Scholar 

  4. Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA et al (2007) Report of the AAPM task group no. 105: issues associated with clinical implementation of monte carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853

    Article  PubMed  Google Scholar 

  5. Deng J, Jiang SB, Pawlicki T, Jinsheng L, Ma CM (2001) Derivation of electron and photon energy spectra from electron beam central axis depth dose curves. Phys Med Biol 46:1429–1449

    Article  CAS  PubMed  Google Scholar 

  6. El Naqa I, Pater P, Seuntjens J (2012) Monte carlo role in radiobiological modeling of radiotherapy outcomes. Phys Med Biol 57:R75–R97

    Article  PubMed  Google Scholar 

  7. Hsiao Y, Stewart R (2008) Monte Carlo simulation of DNA damage induction by X-rays and selected radioisotopes. Phys Med Biol 53:233–244

    Article  CAS  PubMed  Google Scholar 

  8. Karnas SJ, Moiseenko VV, Yu E, Truong P, Battista JJ (2001) Monte Carlo simulations and measurement of DNA damage from X-ray-triggered Auger cascades in iododeoxyuridine (IUdR). Radiat Environ Biophys 40:199–206

    Article  CAS  PubMed  Google Scholar 

  9. Kellerer AM (2002) Electron spectra and the RBE of X rays. Radiat Res 158:13–22

    Article  CAS  PubMed  Google Scholar 

  10. Kirkby C, Field C, Mackenzie M, Syme A, Fallone BG (2007) A Monte Carlo study of the variation of electron fluence in water from a 6 MV photon beam outside of the field. Phys Med Biol 52(12):3563–3578

    Article  CAS  PubMed  Google Scholar 

  11. Kirkby C, Ghasroddashti E, Poirier Y, Tambasco M, Stewart RD (2013) RBE of kV CBCT radiation determined by Monte Carlo DNA damage simulations. Phys Med Biol 58(16):5693

    Article  CAS  PubMed  Google Scholar 

  12. Liu HH, Verhaegen F (2002) An investigation of energy spectrum and lineal energy variations in mega-voltage photon beams used for radiotherapy. Radiat Prot Dosim 99:425–427

    Article  CAS  Google Scholar 

  13. Moiseenko V, Mulligan M, Kron T (2004) Radiation quality of a tomotherapy photon fan beam. Health Phys 87:166–170

    Article  CAS  PubMed  Google Scholar 

  14. Nikjoo H, Goodhead DT (1991) Track structure analysis illustrating the prominent role of low-energy electrons in radiobiological effects of low-LET radiations. Phys Med Biol 36:229–238

    Article  CAS  PubMed  Google Scholar 

  15. Nikjoo H, O’Neill P, Terrissol M, Goodhead DT (1999) Quantitative modeling of DNA damage using Monte Carlo track structure method. Radiat Environ Biophys 38:31–38

    Article  CAS  PubMed  Google Scholar 

  16. Nikjoo H, Emfietzoglou D, Watanabe R, Uehara S (2008) Can Monte Carlo track structure codes reveal reaction mechanism in DNA damage and improve radiation therapy? Radiat Phys Chem 77:1270–1279

    Article  CAS  Google Scholar 

  17. Ottolenghi A, Merzagora M, Paretzke HG (1997) DNA complex lesions induced by protons and α-particles: track structure characteristics determining linear energy transfer and particle type dependence. Radiat Environ Biophys 36:97–103

    Article  CAS  PubMed  Google Scholar 

  18. Paretzke H, Turner J, Hamm R, Ritchie R, Wright H (1991) Spatial distributions of inelastic events produced by electrons in gaseous and liquid water. Radiat Res 127:121–129

    Article  CAS  PubMed  Google Scholar 

  19. Pelowitz DB (2005) MCNPXTM user’s manual. Los Alamos National Laboratory, Los Alamos

  20. Pena J, Franco L, G´omez F, Iglesias A, Lobato R, Mosquera J, Pazos A, Pardo J, Pombar M, Rodr´ıguez A, Send´on J (2004) Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles. Phys Med Biol 49:4929–4942

    Article  CAS  PubMed  Google Scholar 

  21. Rogers D (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51:R287–R301

    Article  CAS  PubMed  Google Scholar 

  22. Rogers D, Faddegon B, Ding G, Ma CM, We J, Mackie T (1995) BEAM: a monte carlo code to simulate radiotherapy treatment units. Med Phys 22:503–524

    Article  CAS  PubMed  Google Scholar 

  23. Scarboro SB, Followill DS, Howell RM, Kry SF (2011) Variations in photon energy spectra of a 6 MV beam and their impact on TLD response. Med Phys 38:2619–2628

    Article  PubMed Central  PubMed  Google Scholar 

  24. Semenenko V, Stewart R (2004) A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res 161:451–457

    Article  CAS  PubMed  Google Scholar 

  25. Semenenko VA, Stewart RD (2005) Monte Carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. II. Comparisons of model predictions to measured data. Radiat Res 164:194–201

    Article  CAS  PubMed  Google Scholar 

  26. Semenenko VA, Stewart RD (2006) Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys Med Biol 51:1693–1706

    Article  CAS  PubMed  Google Scholar 

  27. Spezi E, Lewis G (2008) An overview of Monte Carlo treatment planning for radiotherapy. Radiat Prot Dosim 131:123–129

    Article  CAS  Google Scholar 

  28. Stewart R D. Washington University [online] http://faculty.washington.edu/trawets/mcds/. [Accessed 26 Sept 2012]

  29. Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH, Carlson DJ (2011) Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res 176:587–602

    Article  CAS  PubMed  Google Scholar 

  30. Syme A, Kirkby C, Mirzayans R, Field C, Mackenzie M, Fallone BG (2009) Relative biological damage and electron fluence in and out of a 6 MV photon field. Phys Med Biol 54(21):6623–6633

    Article  CAS  PubMed  Google Scholar 

  31. Tzedakis A, Damilakis JE, Mazonakis M, Stratakis J, Varveris H, Gourtsoyiannis N (2004) Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams. Med Phys 31:907–913

    Article  PubMed  Google Scholar 

  32. Uehara S, Nikjoo H, Goodhead DT (1999) Comparison and assessment of electron cross sections for Monte Carlo track structure codes. Radiat Res 152:202–213

    Article  CAS  PubMed  Google Scholar 

  33. Valentin J (2003) Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (WR): ICRP Publication 92. Ann ICRP 33(4):1–121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Ezzati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzati, A.O., Xiao, Y., Sohrabpour, M. et al. The effect of energy spectrum change on DNA damage in and out of field in 10-MV clinical photon beams. Med Biol Eng Comput 53, 67–75 (2015). https://doi.org/10.1007/s11517-014-1213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1213-3

Keywords

Navigation