Skip to main content

Advertisement

Log in

Evaluation of the hemodynamics in straight 6-mm and tapered 6- to 8-mm grafts as upper arm hemodialysis vascular access

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The present study is intended to investigate and compare the hemodynamics in two different sizes of hemodialysis arteriovenous grafts for upper arm hemodialysis vascular access: 8-mm tapered to 6-mm at the arterial side and straight 6 mm. A computational simulation approach is presented for this study, which is validated against the available experimental and numerical pressure measurements in the literature. The imposed boundary conditions at the arterial inlet and venous outlet boundaries of the models are physiological velocity and pressure waveforms, respectively. Blood flow fields and distribution patterns of the hemodynamic indices including wall shear stress (WSS) as one of the major hemodynamic parameters of the cardiovascular system and spatial wall shear stress gradient (SWSSG) as an indicator of disturbed flow patterns and hence susceptible sites of lesion developments are analyzed and compared between the two grafts. The tapered 6- to 8-mm graft seemingly is associated with less disturbed flow patterns within the venous anastomosis (VA) and the vein downstream while benefiting from higher blood flow rates within. Also, it shows a definitive advantage in terms of WSS and SWSSG distribution patterns around the VA and throughout the vein downstream with significantly lower values, which reduce the risk of thrombosis formation and stenotic lesion developments. The only disadvantage encountered in using 6- to 8-mm tapered graft is higher values of hemodynamic parameters at the arterial junction attributable to its significantly higher mean blood flow rate within. The results clearly indicate that the tapered 6- to 8-mm graft entirely outperforms straight 6-mm graft hemodynamically as an upper arm hemodialysis vascular access graft and confirms clinical data in the literature, which suggests advantageous use of tapered 6- to 8-mm grafts in the creation of upper arm brachioaxillary hemodialysis vascular access grafts in selected groups of patients with expectably higher patency rates and lower complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akoh JA (2009) Prosthetic arteriovenous grafts for hemodialysis. J Vasc Access 10:137–147

    PubMed  Google Scholar 

  2. Allon M (2007) Current management of vascular access. Clin J Am Soc Nephrol 2:786–800

    Article  PubMed  Google Scholar 

  3. Buchanan JR, Kleinstreuer C, Hyun S, Truskey GA (2003) Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. J Biomech 36:1185–1196

    Article  CAS  PubMed  Google Scholar 

  4. DePaola N, Gimbrone MA Jr, Davies PF, Dewey CF Jr (1992) Vascular endothelium responds to fluid shear stress gradients. Arterioscler Thromb 12(11):1254–1257

    Article  CAS  PubMed  Google Scholar 

  5. Dewitz TS, McIntire LV, Martin RR, Sybers HD (1979) Enzyme release and morphological changes in leukocytes induced by mechanical trauma. Blood Cells 5(3):499–512

    CAS  PubMed  Google Scholar 

  6. El Zahab Z, Divo E, Kassab A (2010) Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless CFD and genetic algorithms optimization. Compu Methods Biomech Biomed Engin 13(1):35–47

    Article  Google Scholar 

  7. Ene-Iordache B, Mosconi L, Remuzzi G, Remuzzi A (2001) Computational fluid dynamics of a vascular access case for hemodialysis. J Biomech Eng 123(3):284–292

    Article  CAS  PubMed  Google Scholar 

  8. Ene-Iordache B, Remuzzi A (2012) Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis. Nephrol Dial Transplant 27(1):358–368

    Article  PubMed  Google Scholar 

  9. Ethier CR, Prakash S, Steinman DA et al (2000) Steady flow separation in a 45 degree junction. J Fluid Mech 411:1–38

    Article  Google Scholar 

  10. Fan Y, Xu Z, Jiang W et al (2008) An S-type bypass can improve the hemodynamics in the bypassed arteries and suppress intimal hyperplasia along the host artery floor. J Biomech 41:2498–2505

    Article  PubMed  Google Scholar 

  11. Fillinger MF, Reinitz ER, Schwartz RA, Resetarits DE, Paskanik AM, Bruch D, Bredenberg CE (1990) Graft geometry and venous intimal-medial hyperplasia in arteriovenous loop grafts. J Vasc Surg 11:556–566

    Article  CAS  PubMed  Google Scholar 

  12. Friedman MH, Bargeron CB, Duncan DD, Hutchins GM, Mark FF (1992) Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear. J Biomech Eng 114(3):317–320

    Article  CAS  PubMed  Google Scholar 

  13. Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity Gradients. Circ Res 22:165–197

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Pajares R, Polo JR, Flores A, Gonzalez-Tabares E, Solis JV (2003) Upper arm polytetrafluoroethylene grafts for dialysis access: analysis of two different graft sizes: 6 mm and 6–8 mm. Vasc Endovasc Surg 37:335–343

    Article  Google Scholar 

  15. Haruguchi H, Teraoka S (2003) Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs 6:227–235

    Article  PubMed  Google Scholar 

  16. He X, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech 118(1):74–82

    CAS  Google Scholar 

  17. Himburg HA, Grzybowski DM, Hazel AL et al (2004) Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol 286(5):H1916–H1922

    CAS  PubMed  Google Scholar 

  18. Hofstra L, Bergmans DC, Hoeks AP, Kitslaar PJ, Leunissen KM, Tordoir JH (1994) Mismatch in elastic properties around anastomoses of interposition grafts for hemodialysis access. J Am Soc Nephrol 5(5):1243–1250

    CAS  PubMed  Google Scholar 

  19. Hofstra L, Bergmans DC, Leunissen KM et al (1995) Anastomotic intimal hyperplasia in prosthetic arteriovenous fistulas for hemodialysis is associated with initial high flow velocity and not with mismatch in elastic properties. J Am Soc Nephrol 6(6):1625–1633

    CAS  PubMed  Google Scholar 

  20. Hofstra L, Bergmans DC, Leunissen KM et al (1996) Prosthetic arteriovenous fistulas and venous anastomotic stenosis: influence of a high flow velocity on the development of intimal hyperplasia. Blood Purif 14(5):345–349

    Article  CAS  PubMed  Google Scholar 

  21. Holme PA, Orvim U, Hamers MJ, Solum NO, Brosstad FR, Barstad RM, Sakariassen KS (1997) Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol 17(4):646–653

    Article  CAS  PubMed  Google Scholar 

  22. Huber TS, Carter JW, Carter RL, Seeger JM (2003) Patency of autogenous and polytetrafluoroethylene upper extremity arteriovenous hemodialysis accesses: a systematic review. J Vasc Surg 38:1005–1011

    Article  PubMed  Google Scholar 

  23. Keynton RS, Evancho MM, Sims RL, Rodway NV, Gobin A, Rittgers SE (2001) Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J Biomech Eng 123(5):464–473

    Article  CAS  PubMed  Google Scholar 

  24. Keynton RS, Rittgers SE, Shu MC (1991) The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: an in vitro model study. J Biomech Eng 113(4):458–463

    Article  CAS  PubMed  Google Scholar 

  25. Kharboutly Z, Deplano V, Bertrand E, Legallais C (2010) Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis. Med Eng Phys 32(2):111–118

    Article  PubMed  Google Scholar 

  26. Kharboutly Z, Fenech M, Treutenaere JM, Claude I, Legallais C (2007) Investigations into the relationship between hemodynamics and vascular alterations in an established arteriovenous fistula. Med Eng Phys 29(9):999–1007

    Article  CAS  PubMed  Google Scholar 

  27. Kleinstreuer C, Hyun S, Buchanan JR, Longest PW, Archie JP, Truskey GA (2001) Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng 29(1):1–64

    Article  CAS  PubMed  Google Scholar 

  28. Kleinstreuer C, Lei M, Archie JP Jr (1996) Flow input waveform effects on the temporal and spatial wall shear stress gradients in a femoral graft-artery connector. J Biomech 118(4):506–510

    CAS  Google Scholar 

  29. Knox RC, Berman SS, Hughes JD, Gentile AT, Mills JL (2002) Distal revascularization-interval ligation: a durable and effective treatment for ischemic steal syndrome after hemodialysis access. J Vasc Surg 36:250–256

    Article  PubMed  Google Scholar 

  30. Konner K et al (2003) The arteriovenous fistula. J Am Soc Nephrol 14:1669–1680

    Article  PubMed  Google Scholar 

  31. Krueger U, Zanow J, Scholz H (2002) Computational fluid dynamics and vascular access. Artif Organs 26(7):571–575

    Article  PubMed  Google Scholar 

  32. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302

    Article  CAS  PubMed  Google Scholar 

  33. Leask RL, Butany J, Johnston KW, Ethier CR, Ojha M (2005) Human saphenous vein coronary artery bypass graft morphology, geometry and hemodynamics. Ann Biomed Eng 33(3):301–309

    Article  PubMed  Google Scholar 

  34. Lee SW, Antiga L, Steinman DA (2009) Correlations among indicators of disturbed flow at the normal carotid bifurcation. J Biomech Eng 131(6):061013. doi:10.1115/1.3127252

    Article  PubMed  Google Scholar 

  35. Lee SW, Smith DS, Loth F, Fischer PF, Bassiouny HS (2007) Importance of flow division on transition to turbulence within an arteriovenous graft. J Biomech 40(5):981–992

    Article  PubMed  Google Scholar 

  36. Lei M, Archie JP, Kleinstreuer C (1997) Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J Vasc Surg 25(4):637–646

    Article  CAS  PubMed  Google Scholar 

  37. Lei M, Kleinstreuer C, Archie JP (1996) Geometric design improvements for femoral graft-artery junctions mitigating restenosis. J Biomech 29(12):1605–1614

    Article  CAS  PubMed  Google Scholar 

  38. Leon C, Asif A (2007) Arteriovenous access and hand pain: the distal hypoperfusion ischemic syndrome. Clin J Am Soc Nephrol 2(1):175–183

    Article  PubMed  Google Scholar 

  39. Li L, Terry CM, Shiu YT, Cheung AK (2008) Neointimal hyperplasia associated with synthetic hemodialysis Grafts. Kidney Int 74(10):1247–1261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Longest PW, Kleinstreuer C (2000) Computational haemodynamics analysis and comparison study of arterio-venous grafts. J Med Eng Technol 24(3):102–110

    Article  CAS  PubMed  Google Scholar 

  41. Loth F, Fischer PF, Arsalan N, Bertram CD, Lee SE, Royston TJ, Shaalan WE, Bassiouny HS (2003) Transitional flow at the venous anastomosis of an arteriovenous graft: potential activation of the ERK1/2 mechanotransduction pathway. J Biomech 125:49–61

    Google Scholar 

  42. McVeigh GE, Bratteli CW, Morgan DJ et al (1999) Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance. Hypertension 33(6):1392–1398

    Article  CAS  PubMed  Google Scholar 

  43. Meichelboeck W (2011) End stage renal disease (ESRD) epidemiology—Where are we going? J Vasc Access 12(2):137–181

    Article  Google Scholar 

  44. Meyerson SL, Skelly CL, Curi MA, Shakur UM, Vosicky JE, Glagov S, Schwartz LB (2001) The effects of extremely low shear stress on cellular proliferation and neointimal thickening in the failing bypass graft. J Vasc Surg 34(1):90–97

    Article  CAS  PubMed  Google Scholar 

  45. Nagel T, Resnick N, Deway CF Jr et al (1999) Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler Thromb Vasc Biol 19:1825–1834

    Article  CAS  PubMed  Google Scholar 

  46. NKF, KDOQI (2006) Clinical practice guidelines and clinical practice recommendations for vascular access; 2006 updates (suppl 1). Am J Kidney Dis 48:S227–S364

    Google Scholar 

  47. O’Callaghan S, Walsh M, McGloughlin T (2006) Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis. Med Eng Phys 28:70–74

    Article  PubMed  Google Scholar 

  48. Ojha M (1993) Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model. J Biomech 26(12):1377–1388

    Article  CAS  PubMed  Google Scholar 

  49. Ojha M (1994) Wall shear stress temporal gradient and anastomotic intimal hyperplasia. Circ Res 74:1227–1231

    Article  CAS  PubMed  Google Scholar 

  50. Polo JR, Ligero JM, Diaz-Cartelle J, Garcia-Pajares R, Cervera T, Reparaz L (2004) Randomized comparison of 6-mm straight grafts versus 6- to 8-mm tapered grafts for brachial-axillary dialysis access. J Vasc Surg 40:319–324

    Article  PubMed  Google Scholar 

  51. Rouleau L, Farcas M, Tardif JC, Mongrain R, Leask RL (2010) Endothelial Cell Morphologic Response to Asymmetric Stenosis Hemodynamics: effects of Spatial Wall Shear Stress Gradients. J Biomech Eng 132(8):081013. doi:10.1115/1.4001891

    Article  PubMed  Google Scholar 

  52. Roy-Chaudhury P, Kelly BS, Melhem M et al (2005) Vascular access in hemodialysis: issues, management, and emerging concepts. Cardiol Clin 23:249–273

    Article  PubMed  Google Scholar 

  53. Salam TA, Lumsden AB, Suggs WD, Ku DN (1996) Low shear stress promotes intimal hyperplasia thickening. J Vasc Invest 2:12–22

    Google Scholar 

  54. Shaik E, Hoffmann KA, Dietiker JF (2008) Numerical simulations of pulsatile non-Newtonian flow in an end-to-side anastomosis model. Simul Model Pract Theory 16:1123–1135

    Article  Google Scholar 

  55. Sivanesan S, How TV, Black RA, Bakran A (1999) Flow patterns in the radiocephalic arteriovenous fistula: an in vitro study. J Biomech 32(9):915–925

    Article  CAS  PubMed  Google Scholar 

  56. Slack SM, Jennings LK, Turitto VT (1994) Platelet size distribution measurements as indicators of shear stress-induced platelet aggregation. Ann Biomed Eng 22(6):653–659

    Article  CAS  PubMed  Google Scholar 

  57. Steinman DA, Vinh B, Ethier CR et al (1993) A numerical simulation of flow in a two-dimensional end-to-side anastomosis model. J Biomech Eng 115(1):112–118

    Article  CAS  PubMed  Google Scholar 

  58. Sutera SP, Mehrjardi MH (1975) Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys J 15(1):1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Tardy Y, Resnick N, Nagel T et al (1997) Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler Thromb Vasc Biol 17(11):3102–3106

    Article  CAS  PubMed  Google Scholar 

  60. Van Canneyt K, De Santis G, Eloot S, Segers P, Verdonck P (2011) Swirlgraft versus conventional straight graft as vascular access: a full CFD-analysis. Conference proceedings CMBE11 383–386

  61. Van Canneyt K, Morbiducci U, Eloot S, De Santis G, Segers P, Verdonck P (2013) A computational exploration of helical arterio-venous graft designs. J Biomech 46(2):345–353

    Article  PubMed  Google Scholar 

  62. Van Canneyt K, Pourchez T, Eloot S et al (2010) Hemodynamic impact of anastomosis size and angle in side-to-end arteriovenous fistulae: a computer analysis. J Vasc Access 11(1):52–58

    PubMed  Google Scholar 

  63. Van Tricht I, De Wachter D, Tordoir J, Verdonck P (2004) Hemodynamics in a compliant hydraulic in vitro model of straight versus tapered PTFE arteriovenous graft. J Surg Res 116:297–304

    Article  PubMed  Google Scholar 

  64. Van Tricht I, De Wachter D, Tordoir J, Verdonck P (2006) Comparison of the hemodynamics in 6 mm and 4–7 mm hemodialysis grafts by means of CFD. J Biomech 39:226–236

    Article  PubMed  Google Scholar 

  65. Van Tricht I, De Wachter D, Tordoir J, Verdonck P (2005) Hemodynamics and complications encountered with arteriovenous fistulas and grafts as vascular access for hemodialysis: a review. Ann Biomed Eng 33(9):1142–1157

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Niroomand-Oscuii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmast, M., Niroomand-Oscuii, H., Ghalichi, F. et al. Evaluation of the hemodynamics in straight 6-mm and tapered 6- to 8-mm grafts as upper arm hemodialysis vascular access. Med Biol Eng Comput 52, 797–811 (2014). https://doi.org/10.1007/s11517-014-1181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1181-7

Keywords

Navigation