Medical & Biological Engineering & Computing

, Volume 51, Issue 11, pp 1209–1219

Generating anatomical models of the heart and the aorta from medical images for personalized physiological simulations

  • J. Weese
  • A. Groth
  • H. Nickisch
  • H. Barschdorf
  • F. M. Weber
  • J. Velut
  • M. Castro
  • C. Toumoulin
  • J. L. Coatrieux
  • M. De Craene
  • G. Piella
  • C. Tobón-Gomez
  • A. F. Frangi
  • D. C. Barber
  • I. Valverde
  • Y. Shi
  • C. Staicu
  • A. Brown
  • P. Beerbaum
  • D. R. Hose
Special Issue - Review

DOI: 10.1007/s11517-012-1027-0

Cite this article as:
Weese, J., Groth, A., Nickisch, H. et al. Med Biol Eng Comput (2013) 51: 1209. doi:10.1007/s11517-012-1027-0

Abstract

The anatomy and motion of the heart and the aorta are essential for patient-specific simulations of cardiac electrophysiology, wall mechanics and hemodynamics. Within the European integrated project euHeart, algorithms have been developed that allow to efficiently generate patient-specific anatomical models from medical images from multiple imaging modalities. These models, for instance, account for myocardial deformation, cardiac wall motion, and patient-specific tissue information like myocardial scar location. Furthermore, integration of algorithms for anatomy extraction and physiological simulations has been brought forward. Physiological simulations are linked closer to anatomical models by encoding tissue properties, like the muscle fibers, into segmentation meshes. Biophysical constraints are also utilized in combination with image analysis to assess tissue properties. Both examples show directions of how physiological simulations could provide new challenges and stimuli for image analysis research in the future.

Keywords

Physiological simulationPatient-specific anatomical modelHeart and aorta segmentationCoronary veinsHeart motionWall mechanicsPressure waveTissue properties

Copyright information

© International Federation for Medical and Biological Engineering 2013

Authors and Affiliations

  • J. Weese
    • 1
  • A. Groth
    • 1
  • H. Nickisch
    • 1
  • H. Barschdorf
    • 1
  • F. M. Weber
    • 1
  • J. Velut
    • 2
  • M. Castro
    • 2
  • C. Toumoulin
    • 2
  • J. L. Coatrieux
    • 2
  • M. De Craene
    • 3
  • G. Piella
    • 3
  • C. Tobón-Gomez
    • 3
  • A. F. Frangi
    • 3
    • 4
  • D. C. Barber
    • 5
  • I. Valverde
    • 6
  • Y. Shi
    • 5
  • C. Staicu
    • 5
  • A. Brown
    • 5
  • P. Beerbaum
    • 6
  • D. R. Hose
    • 5
  1. 1.Philips Research LaboratoriesHamburgGermany
  2. 2.Laboratoire Traitement du Signal et de l’ImageUniversité de Rennes and Unit INSERM U1099RennesFrance
  3. 3.CISTIBUniversitat Pompeu FabraBarcelonaSpain
  4. 4.Department of Mechanical EngineeringThe University of SheffieldSheffieldUK
  5. 5.Group of Medical Physics, School of Medicine and Biomedical Sciences, The Royal Hallamshire HospitalThe University of SheffieldSheffieldUK
  6. 6.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonUK