Skip to main content
Log in

Intra-subject variability of snoring sounds in relation to body position, sleep stage, and blood oxygen level

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In a multidimensional feature space, the snoring sounds can extend from a very compact cluster to highly distinct clusters. In this study, we investigated the cause of snoring sound’s variation within the snorers. It is known that a change in body position and sleep stage can affect snoring during sleep but it is unclear whether positional, sleep state, and blood oxygen level variations cause the snoring sounds to have different characteristics, and if it does how significant that effect would be. We extracted 12 characteristic features from snoring sound segments of 57 snorers and transformed them into a 4-D feature space using principal component analysis (PCA). Then, they were grouped based on the body position (side, supine, and prone), sleep stage (NREM, REM, and Arousal), and blood oxygen level (Normal and Desaturation). The probability density function of the transformed features was calculated for each class of categorical variables. The distance between the class-densities were calculated to determine which of these parameters affects the snoring sounds significantly. Analysis of Variance (ANOVA) was run for each categorical variable. The results show that the positional change has the highest effect on the snoring sounds; it results in forming distinct clusters of snoring sounds. Also, sleep state and blood oxygen level variation have been found to moderately affect the snoring sounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoffstein V (2002) Apnea and snoring: state of the art and future directions. Acta Otorhinolaryngol Belg 56:205–236

    PubMed  CAS  Google Scholar 

  2. Martikainen K, Partinen M, Urponen H, Vuori I, Laippala P, Hasan J (1994) Natural evolution of snoring: a 5-year follow-up study. Acta Neurol Scand 90:437–442

    Article  PubMed  CAS  Google Scholar 

  3. Azarbarzin A, Moussavi Z (2011) Automatic and unsupervised snore sound extraction from respiratory sound signals. IEEE Trans Biomed Eng 58:1156–1162

    Article  PubMed  Google Scholar 

  4. Cavusoglu M, Kamasak M, Erogul O, Ciloglu T, Serinagaoglu Y, Akcam T (2007) An efficient method for snore/nonsnore classification of sleep sounds. Physiol Meas 28:841–853

    Article  PubMed  CAS  Google Scholar 

  5. Herzog M, Bremert T, Herzog B, Hosemann W, Kaftan H, Müller A (2011) Analysis of snoring sound by psychoacoustic parameters. Eur Arch Otorhinolaryngol 268:463–470

    Article  PubMed  Google Scholar 

  6. Hill P, Lee B, Osborne J, Osman E (1999) Palatal snoring identified by acoustic crest factor analysis. Physiol Meas 20(2):167–174

    Article  PubMed  CAS  Google Scholar 

  7. Won T, Kim SY, Lee WH, Han DH, Kim D, Kim J, Rhee C, Lee CH (2012) Acoustic characteristics of snoring according to obstruction site determined by sleep videofluoroscopy. Acta Otolaryngol 132:S13–S20

    Article  PubMed  Google Scholar 

  8. Polo OJ, Tafti M, Fraga J, Porkka KVK, Dejean Y, Billiard M (1991) Why don’t all heavy snorers have obstructive sleep apnea? Am J Respir Crit Care Med 143:1288–1293

    CAS  Google Scholar 

  9. Abeyratne U, Wakwella A, Hukins C (2005) Pitch jump probability measures for the analysis of snoring sounds in apnea. Physiol Meas 26:779–798

    Article  PubMed  Google Scholar 

  10. Ng A, Koh T, Abeyratne U, Puvanendran K (2009) Investigation of obstructive sleep apnea using nonlinear mode interactions in nonstationary snore signals. Ann Biomed Eng 37:1796–1806

    Article  PubMed  Google Scholar 

  11. Ng AK, Koh TS, Baey E, Puvanendran K (2009) Role of upper airway dimensions in snore production: acoustical and perceptual findings. Ann Biomed Eng 37(9):1807–1817

    Article  PubMed  Google Scholar 

  12. Mesquita J, Solà-Soler J, Fiz JA, Morera J, Jané R (2012) All night analysis of time interval between snores in subjects with sleep apnea hypopnea syndrome. Med Biol Eng Comput 50:373–381

    Article  PubMed  CAS  Google Scholar 

  13. Solà-Soler J, Fiz JA, Morera J, Jané R (2012) Multiclass classification of subjects with sleep apnoea-hypopnoea syndrome through snoring analysis. Med Eng Phys 34(9):1213–1220

    Article  PubMed  Google Scholar 

  14. Karunajeewa AS, Abeyratne UR, Hukins C (2011) Multi-feature snore sound analysis in obstructive sleep apnea—hypopnea syndrome. Physiol Meas 32:83–97

    Article  PubMed  Google Scholar 

  15. Ng AK, Koh TS, Baey E, Puvanendran K (2007) Diagnosis of obstructive sleep apnea using formant features of snore signals. In: Proceedings of world congress on medical physics and biomedical engineering 2006, IFMBE, vol 14, pp 967–970

  16. Abeyratne U, Karunajeewa A, Hukins C (2007) Mixed-phase modeling in snore sound analysis. Med Bio Eng Comput 45:791–806

    Article  Google Scholar 

  17. Cavusoglu M, Ciloglu T, Serinagaoglu Y, Kamasak M, Erogul O, Akcam T (2008) Investigation of sequential properties of snoring episodes for obstructive sleep apnoea identification. Physiol Meas 29:879–898

    Article  PubMed  CAS  Google Scholar 

  18. Azarbarzin A, Moussavi Z (2012) Snoring sounds variability as a signature of obstructive sleep apnea. Med Eng Phys. doi:10.1016/j.medengphy.2012.06.013

  19. Azarbarzin A, Moussavi Z (2012) A comparison between recording sites of snoring sounds in relation to upper airway obstruction. In: Engineering in medicine and biology society (EMBC), Annual international conference of the IEEE, pp 4246–4249

  20. Nakano H, Ikeda T, Hayashi M, Ohshima E, Onizuka A (2003) Effects of body position on snoring in apneic and nonapneic snorers. Sleep 26(2):169–172

    PubMed  Google Scholar 

  21. Pevernagie D, Aarts RMMeyer MD (2010) The acoustics of snoring. Sleep Med Rev 14:131–144

    Article  PubMed  Google Scholar 

  22. Perez-Padilla J, Slawinski E, Difrancesco L, Feige R, Remmers J, Whitelaw W (1993) Characteristics of the snoring noise in patients with and without occlusive sleep apnea. Am Rev Respir Dis 147(3):635–644

    PubMed  CAS  Google Scholar 

  23. Herzog M, Kühnel T, Bremert T, Herzog B, Hosemann W, Kaftan H (2009) The impact of the microphone position on the frequency analysis of snoring sounds. Eur Arch Otorhinolaryngol 266:1315–1322

    Article  PubMed  Google Scholar 

  24. Huang X, Acero A, Hon H (2001) Formant frequencies. In: Spoken language processing: a guide to theory, algorithm and system development. Prentice Hall PTR, New Jersey, pp 319–324

  25. Hurvich CM, Tsai C (1993) A corrected Akaike information criterion for vector autoregressive model selection. J Time Ser Anal 14:271–279

    Article  Google Scholar 

  26. Inouye T, Shinosaki K, Sakamoto H, Toi S, Ukai S, Iyama A, Katsuda Y, Hirano M (1991) Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol 79:204–210

    Article  PubMed  CAS  Google Scholar 

  27. Proakis JG, Manolakis DK (2006) Power spectrum estimation. In: Digital signal processing, 4th edn, Prentice Hall, New Jersey

  28. Cohen ME, Hudson DL, Deedwania PC (1996) Applying continuous chaotic modeling to cardiac signal analysis. Eng Med Biol Mag IEEE 15:97–102

    Article  Google Scholar 

  29. Jolliffe L (2002) Principal component analysis. Springer-Verlag, Inc., New York

    Google Scholar 

  30. BW Silverman (1986) Density estimation for statistics and data analysis. Chapman and Hall, New York

  31. Devroye L, Györfi L (1985) Nonparametric density estimation: the L1 view. Wiley, New York, p 356

    Google Scholar 

  32. Theodoridis S, Koutroumbas K (2008) Feature selection. In: Pattern recognition, 4th edn. Academic Press, USA, pp 275–276

  33. Burden RL, Faires JD (2005) Numerical differentiation and integration. In: Numerical analysis. Thomson Brooks/Cole, California, pp 167–247

  34. Searle SR (1971) Models not of full rank. In: Linear Mmdels. Wiley, New York, pp 164–225

  35. Pevernagie D, Stanson A, Sheedy P, Daniels B, Shepard J (1995) Effects of body position on the upper airway of patients with obstructive sleep apnea. Am J Respir Crit Care Med 152(1):179–185

    PubMed  CAS  Google Scholar 

  36. Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453–467

    Article  Google Scholar 

  37. Ayappa I, Rapoport D (2003) The upper airway in sleep: physiology of the pharynx. Sleep Med Rev 7(1):9–33

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge and thank Dr. Eleni Giannouli for her input and the invaluable help in data collection. The authors also thank Natural Sciences and Engineering Research Council (NSERC) of Canada and Telecommunication Research Labs (TRLabs) of Manitoba for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Moussavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azarbarzin, A., Moussavi, Z. Intra-subject variability of snoring sounds in relation to body position, sleep stage, and blood oxygen level. Med Biol Eng Comput 51, 429–439 (2013). https://doi.org/10.1007/s11517-012-1011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-1011-8

Keywords

Navigation