Skip to main content

Advertisement

Log in

Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We present the fundamental principles of data assimilation underlying the Verdandi library, and how they are articulated with the modular architecture of the library. This translates—in particular—into the definition of standardized interfaces through which the data assimilation library interoperates with the model simulation software and the so-called observation manager. We also survey various examples of data assimilation applied to the personalization of biophysical models, in particular, for cardiac modeling applications within the euHeart European project. This illustrates the power of data assimilation concepts in such novel applications, with tremendous potential in clinical diagnosis assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. http://verdandi.gforge.inria.fr

References

  1. Auroux D, Blum J (2008) A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm. Nonlinear Process Geophys 15(2):305–319

    Article  Google Scholar 

  2. Bensoussan A (1971) Filtrage Optimal des Systèmes Linéaires. Dunod

  3. Bertoglio C, Moireau P, Gerbeau JF (2012) Sequential parameter estimation for fluid-structure problems. application to hemodynamics. Int J Num Methods Biomed Eng (published online). doi:10.1002/cnm.1476

  4. Chabiniok R, Moireau P, Lesault PF, Rahmouni A, Deux JF, Chapelle D (2011) Estimation of tissue contractility from cardiac cine-mri using a biomechanical heart model. Biomech Model Mechanobiol (published online)

  5. Chapelle D, Gariah A, Moireau P, Sainte-Marie J (2012) A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems—analysis, assessments and applications to parameter estimation. M2AN (submitted)

  6. Chavent G (2010) Nonlinear least squares for inverse problems. Springer, Berlin

  7. D’Elia M, Perego M, Veneziani A (2011) A variational data assimilation procedure for the incompressible Navier–Stokes equations in hemodynamics. J Sci Comput 1–20

  8. Delingette H, Billet F, Wong KCL, Sermesant M, Rhode K, Ginks M, Rinaldi CA, Razavi R, Ayache N (2012) Personalization of cardiac motion and contractility from images using variational data assimilation. IEEE Trans Biomed Eng 59(1):20–24

    Article  PubMed  Google Scholar 

  9. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99:10143–10162

    Article  Google Scholar 

  10. Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J Mar Syst 36(1–2):101–127

    Article  Google Scholar 

  11. Imperiale A, Chabiniok R, Moireau P, Chapelle D (2011) Constitutive parameter estimation methodology using tagged-MRI data. In: Proceedings of FIMH’11. Springer, Berlin

  12. Julier S, Uhlmann J, Durrant-Whyte H (2000) A new method for the nonlinear transformation of means and covariances in filter and estimators. IEEE Trans Autom Control 45(3):447–482

    Article  Google Scholar 

  13. Konukoglu E, Relan J, Cilingir U, Menze BH, Chinchapatnam P, Jadidi A, Cochet H, Hocini M, Delingette H, Jais P, Haïssaguerre M, Ayache N, Sermesant M (2011) Efficient probabilistic model personalization integrating uncertainty on data and parameters: application to Eikonal-Diffusion models in cardiac electrophysiology. Prog Biophys Mol Bio 107(1):134–146

    Article  PubMed  Google Scholar 

  14. Luenberger DG (1963) Determining the state of a linear with observers of low dynamic order. PhD Thesis, Stanford University

  15. Moireau P (2008) Filtering-based data assimilation for second-order hyperbolic PDEs. Applications in cardiac mechanics. PhD Thesis, Ecole Polytechnique

  16. Moireau P, Chapelle D (2010) Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems. COCV (published online). doi:10.1051/cocv/2010006

  17. Moireau P, Chapelle D (2011) Erratum of article “reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems”. COCV. 17:406–409. doi:10.1051/cocv/2011001

    Google Scholar 

  18. Moireau P, Chapelle D, Le Tallec P (2008) Joint state and parameter estimation for distributed mechanical systems. Comput Methods Appl Mech Eng 197:659–677

    Article  Google Scholar 

  19. Moireau P, Chapelle D, Le Tallec P (2009) Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging. Inverse Probl 25(3):035010. doi:10.1088/0266-5611/25/3/035010

  20. Moreau-Villeger V, Delingette H, Sermesant M, Ashikaga H, McVeigh ER, Ayache N (2006) Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart. IEEE Trans Biomed Eng 53(8):1457–1466

    Article  PubMed  Google Scholar 

  21. Pham DT (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. J Mar Syst 129:1194–1207

    Google Scholar 

  22. Pham DT, Verron J, Roubaud MC (1998) A singular evolutive extended Kalman filter for data assimilation in oceanography. J Mar Syst 16(3–4):323–340

    Article  Google Scholar 

  23. Relan J, Chinchapatnam P, Sermesant M, Rhode K, Ginks M, Delingette H, Rinaldi CA, Razavi R, Ayache N (2011) Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. J R Soc Interf Focus 1(3):396–407

    Article  Google Scholar 

  24. Smith N, de Vecchi A, McCormick M, Nordsletten D, Camara O, Frangi AF, Delingette H, Sermesant M, Relan J, Ayache N, Krueger MW, Schulze WHW, Hose R, Valverde I, Beerbaum P, Staicu C, Siebes M, Spaan J, Hunter P, Weese J, Lehmann H, Chapelle D, Razavi R (2011) euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interf Focus 1(3):349–364

    Article  Google Scholar 

  25. Wang L, Zhang H, Wong KCL, Shi P (2009) A reduced-rank square root filtering framework for noninvasive functional imaging of volumetric cardiac electrical activity. In: IEEE International conference on acoustics, speech and signal processing. ICASSP 2009, pp 533–536

  26. Xi J, Lamata L, Lee J, Moireau P, Chapelle D, Smith N. (2011) Myocardial transversely isotropic material parameter estimation from in-silico measurements based on a reduced-order unscented Kalman filter. J Mech Behav Biomed Mater 4(7):1090–1102

    Article  PubMed  Google Scholar 

  27. Xi J, Lamata P, Shi W, Niederer S, Land S, Rueckert D, Duckett D, Shetty A, Rinaldi CA, Razavi R (2011) An automatic data assimilation framework for patient-specific myocardial mechanical parameter estimation. Funct Imaging Model Heart 392–400

Download references

Acknowledgments

This work has been partially supported by the European Commission (FP7-ICT-2007-224495: euHeart and FP7-ICT-2009-269978: VPH-Share).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chapelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapelle, D., Fragu, M., Mallet, V. et al. Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart. Med Biol Eng Comput 51, 1221–1233 (2013). https://doi.org/10.1007/s11517-012-0969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0969-6

Keywords

Navigation