Skip to main content

Advertisement

Log in

Computerized detection and recognition of follicles in ovarian ultrasound images: a review

Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Observing changes in females’ ovaries is essential in obstetrics and gynaecological imaging, e.g., genetic engineering and human reproduction. It is particularly important to monitor the dynamics of ovarian follicles’ growth, as only fully mature and grown follicles, i.e., the dominant follicles have a potential to ovulate at the end of a follicular phase. Gynaecologists follow this process in two dimensions, but recently three-dimensional (3-D) ultrasound examinations are coming to the fore. This paper surveys the existing computer methods for detection, recognition, and analyses of follicles in two-dimensional (2-D) and 3-D ovarian ultrasound recordings. Our study focuses on the efficiency, validation, and assessment of proposed follicle processing algorithms. The most important processing steps were identified in order to compare their performances. Higher ranking solutions are suggested for the so-called best algorithm for 2-D and 3-D ultrasound recordings of ovarian follicles. Finally, some guidelines for future research in this field are discussed, in particular for 3-D ultrasound volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Adams J, Franks S, Polson DW (1985) Multifollicluar ovaries: clinical and endocrine features and response to pulsatile gonadotropin releasing hormone. Lancet II:1375–1379

    Article  Google Scholar 

  2. Bian N, Eramian M, Pierson R (2006) Evaluation of texture features for analysis of ovarian follicular development. In: Larsen R, Nielsen M, Sporring J (eds) Lecture notes in computer science, vol 4,191, Springer, Berlin, pp 93–100

  3. Brannstrorm M, Zickrisson U, Hagstroom H (1998) Blood flow indices as measured by color doppler ultrasonography in different regions of the human periovulatory follicle. Fertil. Steril. 69:435–442

    Article  Google Scholar 

  4. Chen T, Zhang W, Good S, Zhou K, Comaniciu D (2009) Automatic ovarian follicle quantification from 3-D ultrasound data using global/local context with database guided segmentation. In: Proceedings of the 12th IEEE conference on computer vision, Kyoto, pp 795–802

  5. Cigale B, Zazula D (2004) Segmentation of ovarian ultrasound images using cellular neural. Intern. J. Pattern. Recognit. Artif. Intell. 18(4):563–581

    Article  Google Scholar 

  6. Cigale B, Lenič M, Zazula D (2006) Segmentation of ovarian ultrasound images using cellular neural networks trained by support vector machines. In: Gabrys B, Howlett R, Jain L (eds) Lecture notes in computer science, vol 4,253, Springer, Berlin, pp 515–522

  7. Cigale B (2007) A multiscale approach to detection and growth assessment of structures in 3-D ultrasound volumes. Ph.D. thesis, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia

  8. Cigale B, Zazula D (2007) Segmentation of 3-D ovarian ultrasound volumes using continuous wavelet transform. In: Proceedings of the 11th Mediterranean Conference on Medical and Biological Enginering and Computing, pp. 1017–1020. Ljubljana, Slovenia

  9. Cigale B, Šinjur S, Zazula D (2010) Automated quantitative assessment of perifollicular vascularization using power Doppler ultrasound images. WSEAS Trans Comput. 9(2):194–203

    Google Scholar 

  10. Cinthio M, Jansson T, Eriksson A, Ahlgren AR, Persson HW, Lindstrom K (2010) Evaluation of an algorithm for arterial lumen diameter measurements by means of ultrasound. Med. Biol. Eng. Comput. 48(11):1133–1140

    Article  PubMed  Google Scholar 

  11. Deutch T, Abuhamad A (2007) Sonography-based automated volume count (SonoAVC): an efficient and reproducible method of follicular assessment. GE Healthcare, Waukesha, USA

  12. Deutch T, Joergner I, Matson D, Oehninger S, Bocca S, Hoenigmann D, Abuhamad A (2009) Automated assessment of ovarian follicles using a novel three-dimensional ultrasound software. Fertil. Steril. 92(5):1562–1568

    Article  PubMed  Google Scholar 

  13. Foulot H, Ranoux C, Dobuisson J, Rambaud FX, Poirot C (1989) In vitro fertilization without ovarian stimulation: a simplified protocol applied in 80 cycles. Fertil. Steril. 52:617–621

    PubMed  CAS  Google Scholar 

  14. Gooding M, Kennedy S, Noble J (2003) Volume reconstruction from sparse 3-D ultrasonography. In: R. Ellis, T. Peters (eds) Lecture notes in computer science, vol 2,879, Springer, Berlin, pp 416–423

  15. Gooding M (2004) 3-D ultrasound image analysis in assisted reproduction. PhD thesis, Merton College, University of Oxford, Oxford

  16. Gooding M, Kennedy S, Noble J (2005) Temporal calibration of freehand three-dimensional ultrasound using image alignment. Ultrasound Med. Biol. 31(7):919–927

    Article  PubMed  Google Scholar 

  17. Gooding M, Kennedy S, Noble J (2008) Volume segmentation and reconstruction from freehand three-dimensional ultrasound data with application to ovarian follicle measurement. Ultrasound Med. Biol. 34(2):183–195

    Article  PubMed  Google Scholar 

  18. Gore M, Nayudu P, Valisavljević V (1995) Prediction of ovarian cycle outcome by follicular characteristics, stage 1. Hum. Reprod. 10(9):2313–2319

    PubMed  CAS  Google Scholar 

  19. Hiremath P, Tegnoor J (2009) Recognition of follicles in ultrasound images of ovaries using geometric features. In: Proceedings of the 2nd IEEE conference on biomedical and pharmaceutical engineering (ICBPE 2009), Singapore, pp 1–8

  20. Hiremath P, Tegnoor J (2010) Automatic detection of follicles in ultrasound images of ovaries using edge based method. IJCA, Special Issue on RTIPPR 2:120–125

    Google Scholar 

  21. Hiremath P, Tegnoor J (2010) Automatic detection of follicles in ultrasound images of ovaries using HRGMF based segmentation. Int. J. Multimed. Comput. Vision Mach. Learn. 1(1):83–87

    Google Scholar 

  22. Hsu YC, Jiang CF, Uang CM (2001) Auto-segmentation of ultrasonic images by the genetic algorithm. J. Med. Biol. Eng. 21(2):121–126

    Google Scholar 

  23. Jarvela IY, Sladkevicius P, Kelly S, Ojha K, Nargund G, Campbell S (2002) Three-dimensional sonographic and power Doppler characterization of ovaries in late follicular phase. Ultrasound Obstet. Gynecol. 20(3):281–285

    Article  PubMed  CAS  Google Scholar 

  24. Jayaprakasan K, Hilwah N, Kendall N, Hopkisson J, Campbell B, Johnson I, Raine-Fenning N (2007) Does 3-D ultrasound offer any advantage in the pretreatment assessment of ovarian reserve and prediction of outcome after assisted reproduction treatment?. Hum. Reprod. 22(1):1–10

    Google Scholar 

  25. Jiang CF, Chen ML (1998) Segmentation of ultrasonic ovarian images by texture features. In: Proceedings of the 20th annual international conference of the IEEE engineering in medicine and biology society, vol 20, Hong Kong, pp 850–853

  26. Jörgner I, Scherleitner E (2008) SonoAVC: Studies on automated detection and measurements of hyper-stimulated follicles utilizing a new algorithm. GE Healthcare, Waukesha, USA

  27. Krivanek A, Sonka M (1998) Ovarian ultrasound image analysis: follicle segmentation. IEEE Trans. Med. Imaging 17(9):935–944

    Article  PubMed  CAS  Google Scholar 

  28. Lawrence M, Eramian M, Pierson R, Neufeld E (2007) Computer assisted detection of polycystic ovary morphology in ultrasound images. In: Proceedings of the 4th Canadian conference on computer and robot vision, Canada, pp 105–112

  29. Lenič M, Zazula D, Cigale B (2007) Obtaining completely stable cellular neural network templates for ultrasound image segmentation. In: Proceedings of the 11th Mediterranean conference on medical and biological enginering and computing, Ljubljana, Slovenia, pp 1013–1016

  30. Lenič M, Zazula D, Cigale B (2007) Segmentation of ovarian ultrasound images using single template cellular neural networks trained with support vector machines. In: Proceedings of the IEEE symposium on computer-based medical systems, Maribor, Slovenia, pp 205–210

  31. Loizou C, Pattichis C, Pantziaris M, Tyllis T, Nicolaides A (2007) Snakes based segmentation of the common carotid artery intima media. Med. Biol. Eng. Comput. 45(1):35–49

    Article  PubMed  CAS  Google Scholar 

  32. Lu Q (2008) 3-D follicle segmentation in ultrasound image volumes of ex-situ bovine ovaries. Master’s thesis, College of graduate studies and research, University of Saskatchewan, Saskatchewan, Canada

  33. Moher D, Liberati A, Tetzlaff J, Altman D (2009) Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. Open Med. 3:123–130

    Article  Google Scholar 

  34. Muzzolini R, Yang YH, Pierson R (1993) Multiresolution texture segmentation with application to diagnostic ultrasound images. IEEE Trans. Med. Imaging 12(1):108–123

    Article  PubMed  CAS  Google Scholar 

  35. Ng E, Tang O, Ho P (2000) The significance of the number of antral follicles prior to stimulation in predicting ovarian response in an IVF programme. Hum. Reprod. 15:1937–1942

    Article  PubMed  CAS  Google Scholar 

  36. Nilsson L, Wikland M, Hamburger L, Hillensjo T, Chari S, Sturm G, Daume E (1985) Simplification of the method of in vitro fertilization: sonographic measurements of follicular diameter as a sole index of follicular maturity. J. In Vitro Fertil. Embryo. Transf. 2(1):17–22

    Article  CAS  Google Scholar 

  37. Noble J, Boukerroui D (2006) Ultrasound image segmentation: A survey. IEEE Trans. Med. Imaging 25(8):987–1010

    Article  PubMed  Google Scholar 

  38. Pedersen P, Mitra V, Dey J (2006) Boundary detection in 3-D ultrasound reconstruction using nearest neighbor map. In: Proceedings of the SPIE international symposium on medical imaging, vol 6,147, San Diego, pp 57–67

  39. Potočnik B, Zazula D, Solina F (1997) Classical image processing vs. computer vision techniques in automated computer-assisted detection of follicles in ultrasound images of ovary. In: Proceedings of the 6th international conference on image processing and its applications, pp 551–555

  40. Potočnik B, Zazula D, Korže D (1997) Automated computer-assisted detection of follicles in ultrasound images of ovary. J. Med. Syst. 21(6):445–457

    Article  PubMed  Google Scholar 

  41. Potočnik B, Zazula D (2002) Automated analysis of a sequence of ovarian ultrasound images, Part I: Segmentation of single 2-D images. Image Vision Comput. 20(3):217–225

    Article  Google Scholar 

  42. Potočnik B, Zazula D (2002) Automated analysis of a sequence of ovarian ultrasound images, Part II: Prediction-based object recognition from a sequence of images. Image Vision Comput. 20(3):227–235

    Article  Google Scholar 

  43. Potočnik B, Zazula D (2003) Improved prediction-based ovarian follicle detection from a sequence of ultrasound images. Comput. Methods Programs Biomed. 70:199–213

    Article  PubMed  Google Scholar 

  44. Raine-Fenning N, Jayaprakasan K, Clewes J (2007) Automated follicle tracking facilitates standardization and may improve work flow. Ultrasound Obstet. Gynecol. 30(7):1015–1018

    Article  PubMed  CAS  Google Scholar 

  45. Raine-Fenning N, Jayaprakasan K, Clewes J, Joergner I, Bonaki S, Chamberlain S, Devlin L, Priddle H, Johnson I (2008) SonoAVC: a novel method of automatic volume calculation. Ultrasound Obstet. Gynecol. 31(6):691–696

    Article  PubMed  CAS  Google Scholar 

  46. Romeny B, Tirtulaer B, Kalitzin S, Scheffer G, Broekmans F, Staal J, Velde E (1999) Computer assisted human follicle analysis for fertility prospects with 3-D ultrasound. In: A. Kuba, M. Šaamal, A. Todd-Pokropek (eds) Lecture notes in computer science, vol 1,613, Springer, Berlin, pp 56–69

  47. Sarty G, Liang W, Sonka M, Pierson R (1998) Semiautomated segmentation of ovarian follicular ultrasound images using a knowledge-based algorithm. Ultrasound Med. Biol. 24(1):27–42

    Article  PubMed  CAS  Google Scholar 

  48. Sugawara M, Niki K, Ohte N, Okada T, Harada A (2009) Clinical usefulness of wave intensity analysis. Med. Biol. Eng. Comput. 47(2):197–206

    Article  PubMed  Google Scholar 

  49. Tomaževič T, Vrtovec HM (1996) Early timed follicular aspiration prevents severe ovarian hyperstimulation syndrome. J. Assist. Reprod. Genet. 13:282–286

    Article  PubMed  Google Scholar 

  50. VanderLaan D, Khurshid K, Ireland J, Jimenez-Krassel F, McGough R (2008) Automated follicle segmentation in ultrasound scans of bovine ovaries. Int. J. Appl. Electromagn. Mech. 28:49–54

    Google Scholar 

  51. Viher B, Dobnikar A, Zazula D (1998) Cellular automata and follicle recognition problem and possibilities of using cellular automata for image recognition purposes. Int. J. Med. Inform. 49:231–241

    Article  PubMed  CAS  Google Scholar 

  52. Vlaisavljević V, Reljič M, Gavrić-Lovrec V, Zazula D, Sergent N (2003) Measurement of perifollicular blood flow of the dominant preovulatory follicle using three-dimensional power Doppler. Ultrasound Obstet. Gynecol. 22(5):520–526

    Article  PubMed  Google Scholar 

  53. Vlaisavljević V, Borko E, Radaković B, Zazula D, Došen M (2010) Changes in perifollicular vascularity after administration of human chorionic gonadotropin measured by quantitative three-dimensional power Doppler ultrasound. Wien. klin. Wochenschr. 122(Suppl 2):85–90

    Article  PubMed  Google Scholar 

  54. Vlaisavljević V, Dosen M (2008) Ultrasound in human reproduction. In: Ahmed B, Adra A, Kavak ZN (eds) Donald school basic textbook of ultrasound in obstetrics and gynecology, Jaypee brothers medical publishers, India, pp 480–517

  55. Zazula D, Sergent N, Vlaisavljević V (2004) Automated estimation of blood volume around the ovarian follicles. In: Antoniou G, Mastorakis N, Panfilov O (eds) Advances in signal processing and computer technologies. Electrical and computer engineering series, WSES Press, USA, pp 145–150

  56. Zimmer Y, Akselrod S (2000) Image segmentation in obstetrics and gynecology. Ultrasound Med. Biol. 26(Suppl 1):S39–S40

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge a valuable contribution of Professor Dr. Veljko Vlaisavljević from the University Clinical Centre of Maribor, who provided us with annotated ovarian ultrasound recordings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Božidar Potočnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potočnik, B., Cigale, B. & Zazula, D. Computerized detection and recognition of follicles in ovarian ultrasound images: a review. Med Biol Eng Comput 50, 1201–1212 (2012). https://doi.org/10.1007/s11517-012-0956-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0956-y

Keywords

Navigation