Skip to main content

Advertisement

Log in

Towards patient-specific risk assessment of abdominal aortic aneurysm

  • Special Issue - Review
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Diagnosis of vascular disease and selection and planning of therapy are to a large extent based on the geometry of the diseased vessel. Treatment of a particular vascular disease is usually considered if the geometrical parameter that characterizes the severity of the disease, e.g. % vessel narrowing, exceeds a threshold. The thresholds that are used in clinical practice are based on epidemiological knowledge, which has been obtained by clinical studies including large numbers of patients. They may apply “on average”, but they can be sub-optimal for individual patients. To realize more patient-specific treatment decision criteria, more detailed knowledge may be required about the vascular hemodynamics, i.e. the blood flow and pressure in the diseased vessel and the biomechanical reaction of the vessel wall to this flow and pressure. Over the last decade, a substantial number of publications have appeared on hemodynamic modeling. Some studies have provided first evidence that this modeling may indeed be used to support therapeutic decisions. The goal of the research reported in this paper is to go one step further, namely to investigate the feasibility of a patient-specific hemodynamic modeling methodology that is not only effective (improves therapeutic decisions), but that is also efficient (easy to use, fast, as much as possible automatic) and robust (insensitive to variation in the quality of the input data, same outcome for different users). A review is presented of our research performed during the last 5 years and the results that were achieved. This research focused on the risk assessment for one particular disease, namely abdominal aortic aneurysm, a life-threatening dilatation of the abdominal aorta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bartlett ES, Symons SP, Fox AJ (2006) Correlation of carotid stenosis diameter and cross-sectional areas with CT angiography. Am J Neuroradiol 27:638–642

    Google Scholar 

  2. Biswas R, Strawn RC (1998) Tetrahedral and hexahedral mesh adaptation for CFD problems. Appl Numer Math 26:135–151

    Article  MATH  MathSciNet  Google Scholar 

  3. Boschetti F, Di Martino E, Gioda G (2007) A poroviscoelastic model of intraluminal thrombus from abdominal aortic aneurysms. Proceedings of the 2007 Summer Bioengineering Conference, Keystone, Colorado, USA

  4. Breeuwer M (2005) Quantification of atherosclerotic heart disease with cardiac MRI. MedicaMundi 49(2):30–38

    Google Scholar 

  5. Breeuwer M, Götte U, Hoogeveen R, Wolters BJBM, de Putter S, van de Bosch H, Buth J, Rouet J-M, Laffargue F (2004) Assessment of the rupture Risk of abdominal aortic aneurysms by patient-specific hemodynamic modeling—initial results. Int Congr Ser 1268:1090–1095

    Article  Google Scholar 

  6. van Dam EV, Dams SD, Peters GWM, Rutten MCM, Schurink GWH, Buth J, van de Vosse FN (2006) Determination of linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biorheology 43(6):695–707

    Google Scholar 

  7. van Dam EA, Dams SD, Peters GW, Rutten MC, Schurink GW, Buth J, van de Vosse FN (2008) Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech Model Mechanobiol 7(2):127–137

    Article  Google Scholar 

  8. Darling RC, Messina CR, Brewster DC, Ottinger LW (1977) Autopsy study of unoperated abdominal aortic aneurysms: the case for early resection. Circulation 56(3 Suppl):II161–II164

    Google Scholar 

  9. Di Martino E, Mantero S, Inzoli F, Melissano G, Astore D, Chiesa R, Fumero R (1998) Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur J Vasc Endovasc Surg 15(4):290–299

    Article  Google Scholar 

  10. Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE (2002) In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 36(3):589–597

    Article  Google Scholar 

  11. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 37(4):724–732

    Article  Google Scholar 

  12. Gerard O, Billon AC, Rouet JM, Jacob M, Fradkin M, Allouche C (2001) Efficient model-based quantification of left ventricular function in 3-D echocardiography. IEEE Trans Med Imaging 21(9):1059–1068

    Article  Google Scholar 

  13. Grainger RG, Allison DJ, Adam A, and Dixon AK (eds) (2001) Diagnostic radiology: a textbook of medical imaging. Harcourt Publishers Ltd., London, England. ISBN: 0-443-06432-6

  14. Greenhalgh RM, Forbes JF, Fowkes FG, Powel JT, Ruckley CV, Brady AR, Brown LC, Thompson SG (1998) Early elective open surgical repair of small abdominal aortic aneurysms is not recommended: results of the UK small aneurysm trial. Steering committee. Eur J Vasc Endovasc Surg 16(6):462–464

    Article  Google Scholar 

  15. Heng MS, Fagan MJ, Collier JW, Desai G, McCollum PT, Chetter IC (2008) Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J Vasc Surg 47(1):17–22

    Article  Google Scholar 

  16. Kose U, Visser K, Tryon CL, Breeuwer M (2005) Comprehensive combined visualization of anatomy and hemodynamics. Proc SPIE Med Imaging 5744:435–445

    Google Scholar 

  17. Kose U, de Putter S, Hoogeveen R, Breeuwer M (2006) Computational fluid dynamics of abdominal aortic aneurysms with patient-specific inflow boundary conditions. Proc SPIE Med Imaging 6143:61432D1–61432D11

    Google Scholar 

  18. Leung JH, Wright AR, Cheshire N, Crane J, Thom SA, Hughes AD, Xu Y (2006) Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed Eng Online 5:33

    Article  Google Scholar 

  19. Lu J, Zhou X, Raghavan ML (2007) Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J Biomech 40(3):693–696

    Article  Google Scholar 

  20. Marra SP, Chen DT, Fillinger MF, Dwyer JM, Kennedy FE (2005) Effects of including calcified deposits in the finite element modeling of an abdominal aortic aneurysm. Proceedings of the Summer Bioengineering Conference, Colorado, USA

  21. Mower WR, Quinones WJ, Gambhir SS (1997) Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J Vasc Surg 26(4):602–608

    Article  Google Scholar 

  22. Nicholls SC, Gardner JB, Meissner MH, Johansen HK (1998) Rupture in small abdominal aortic aneurysms. J Vasc Surg 28(5):884–888

    Article  Google Scholar 

  23. Olabarriaga SD, Rouet JM, Fradkin M, Breeuwer M, Niessen WJ (2005) Segmentation of thrombus in abdominal aortic aneurysms from CTA with nonparametric statistical grey level appearance modeling. IEEE Trans Med Imaging 24(4):477–485

    Article  Google Scholar 

  24. Papaharilaou Y, Ekaterinaris JA, Manousaki E, Katsamouris AN (2007) A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J Biomech 40(2):367–377

    Article  Google Scholar 

  25. United Kingdom Small Aneurysm Trial Participants (2002) Long-term outcomes of immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med 346(19): 1445–1452

    Google Scholar 

  26. Pedley TJ (2003) Mathematical modeling of arterial fluid dynamics. J Eng Math 47:419–444

    Article  MATH  MathSciNet  Google Scholar 

  27. de Putter S (2006) On patient-specific wall stress analysis in abdominal aortic aneurysms. Ph.D. Thesis, 19. ISBN: 90-386-2578-2

  28. de Putter S, Breeuwer M, Kose U, Laffargue F, Rouet J-M, Hoogeveen R, van den Bosch H, Buth J, van de Vosse FN, Gerritsen FA (2005) Automatic determination of the dynamic geometry of abdominal aortic aneurysm from MR with application to wall stress simulations. Int Congr Ser 1281:339–344

    Article  Google Scholar 

  29. de Putter S, Laffargue F, Breeuwer M, van de Vosse FN, Gerritsen FA (2006) Computational mesh generation for vascular structures. Int J Cars 1:1–11

    Article  Google Scholar 

  30. de Putter S, Breeuwer M, van de Vosse F, Kose U, Gerritsen FA (2006) Patient-specific models of wall stress in abdominal aortic aneurysm: a comparison between MR and CT. Proc SPIE Med Imaging 6143:61430D1–61430D12

    Google Scholar 

  31. de Putter S, van de Vosse FN, Breeuwer M, Gerritsen FA (2006) Local influence of calcifications on the wall mechanics of abdominal aortic aneurysm. Proc SPIE Med Imaging 6143:61432E1–61432E11

    Google Scholar 

  32. de Putter S, Wolters BJBM, Rutten MCM, Breeuwer M, Gerritsen FA, van de Vosse FN (2007) Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J Biomech 40(5):1081–1090

    Article  Google Scholar 

  33. Raghavan ML, Fillinger MF, Marra SP, Naegelein BP, Kennedy FE (2005) Automated methodology for determination of stress distribution in human abdominal aortic aneurysm. J Biomech Eng 127(5):868–871

    Article  Google Scholar 

  34. Raghavan ML, Ma B, Fillinger MF (2006) Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann Biomed Eng 34(9):1414–1419

    Article  Google Scholar 

  35. Schroeder W, Martin K, Lorensen B (2002) The visualization toolkit, 3rd edn. Kitware, Inc., New York. ISBN: 1-930934-07-6

  36. Schurink GWH, van Baalen JM, Visser MJT, van Bockel JH (2000) Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J Vasc Surg 31(3):501–506

    Article  Google Scholar 

  37. Scott RAP, Wilson NM, Ashton HA, Kay DN (1995) Influence of screening on the incidence of ruptured abdominal aortic aneurysm: 5-year results of a randomized controlled study. Br J Surg 82:1066–1070

    Article  Google Scholar 

  38. Scott RA, Ashton HA, Lamparelli MJ, Harris GJ, Stevens JW (1999) A 14-year experience with 6 cm as a criterion for surgical treatment of abdominal aortic aneurysm. Br J Surg 86(10):1317–1321

    Article  Google Scholar 

  39. Scotti CM, Shkolnik AD, Muluk SC, Finol EA (2005) Fluid–structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed Eng Online 4:64

    Article  Google Scholar 

  40. Scotti CM, Jimenez J, Muluk SC, Finol EA (2008) Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction. Comput Methods Biomech Biomed Eng 11(3):301–322

    Article  Google Scholar 

  41. Smith SC (2001) ACC/AHA guidelines for percutaneous coronary intervention. Circulation 103:3019–3041

    Google Scholar 

  42. Speelman L, Bohra A, Makaroun MS, Vorp DA (2005) Assessment of wall calcification in patient-specific finite element analyses of abdominal aortic aneurysm. Proceedings of the Summer Bioengineering Conference, Colorado, USA

  43. Speelman L, Bohra A, Bosboom EM, Schurink GW, van de Vosse FN, Makaorun MS, Vorp DA (2007) Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J Biomech Eng 129(1):105–109

    Article  Google Scholar 

  44. Thubrikar MJ, Al Soudi J, Robicsek F (2001) Wall stress studies of abdominal aortic aneurysm in a clinical model. Ann Vasc Surg 15(3):355–366

    Article  Google Scholar 

  45. Truijers M, Pol JA, Schultzekool LJ, van Sterkenburg SM, Fillinger MF, Blankensteijn JD (2007) Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 33(4):401–407

    Article  Google Scholar 

  46. Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G, Chetter IC, McCollum PT (2004) A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J Vasc Endovasc Surg 28(2):168–176

    Google Scholar 

  47. Vorp AD, Vande Geest JP (2005) Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler Thromb Vasc Biol 25(8):1558–1566

    Article  Google Scholar 

  48. Wang DH, Makaroun MS, Webster MW, Vorp DA (2002) Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg 36(3):598–604

    Article  Google Scholar 

  49. Wever JJ, Blankensteijn JD, van Rijn JC, Broeders IAMJ, Eikelboom BC, Mali WPThM (2000) Inter- and intraobserver variability of CT measurements obtained after endovascular repair of abdominal aortic aneurysms. Am J Roentgenol 175(5):1279–1282

    Google Scholar 

  50. Wink O, Frangi AF, Verdonck B, Viergever MA, Niessen WJ (2002) 3D MR coronary axis determination using a minimum cost path approach. Magn Reson Med 47:1169–1175

    Article  Google Scholar 

  51. Wolters BJBM, Rutten MCM, Schurink GW, Kose U, de Hart J, van de Vosse FN (2005) A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms. Med Eng Phys 27(10):871–883

    Article  Google Scholar 

  52. Yoo TS (ed) (2004) Insight into images: principles and practice for segmentation, registration, and image analysis. AK Peters Ltd., Wellesley, MA. ISBN: 1568812175

Download references

Acknowledgments

This research was performed in the scope of the Hemodyn project, a cooperation between Philips Healthcare Best (Healthcare Informatics), the Technische Universiteit Eindhoven (Biomedical Engineering department) and the Erasmus University (Thoraxcenter, Biomedical Engineering), Rotterdam, The Netherlands. The Hemodyn project was partly funded by SenterNovem (Dutch Ministry of Economic Affairs). We are grateful to Mustafa Megahed and the CFD Team of the ESI group for the support on interfacing to and using the CFD-ACE+ software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Breeuwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breeuwer, M., de Putter, S., Kose, U. et al. Towards patient-specific risk assessment of abdominal aortic aneurysm. Med Biol Eng Comput 46, 1085–1095 (2008). https://doi.org/10.1007/s11517-008-0393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0393-0

Keywords

Navigation