Skip to main content
Log in

PTEN at the interface of immune tolerance and tumor suppression

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

PTEN is well known to function as a tumor suppressor that antagonizes oncogenic signaling and maintains genomic stability. The PTEN gene is frequently deleted or mutated in human cancers and the wide cancer spectrum associated with PTEN deficiency has been recapitulated in a variety of mouse models of Pten deletion or mutation. Pten mutations are highly penetrant in causing various types of spontaneous tumors that often exhibit resistance to anticancer therapies including immunotherapy. Recent studies demonstrate that PTEN also regulates immune functionality.

Objective

To understand the multifaceted functions of PTEN as both a tumor suppressor and an immune regulator.

Methods

This review will summarize the emerging knowledge of PTEN function in cancer immunoediting. In addition, the mechanisms underlying functional integration of various PTEN pathways in regulating cancer evolution and tumor immunity will be highlighted.

Results

Recent preclinical and clinical studies revealed the essential role of PTEN in maintaining immune homeostasis, which significantly expands the repertoire of PTEN functions. Mechanistically, aberrant PTEN signaling alters the interplay between the immune system and tumors, leading to immunosuppression and tumor escape.

Conclusion

Rational design of personalized anti-cancer treatment requires mechanistic understanding of diverse PTEN signaling pathways in modulation of the crosstalk between tumor and immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzelon A N, Wu H, Rickert R C (2003). Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat Immunol, 4(3): 287–294

    Article  CAS  PubMed  Google Scholar 

  • Bassi C, Ho J, Srikumar T, Dowling R J, Gorrini C, Miller S J, Mak T W, Neel B G, Raught B, Stambolic V (2013). Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science, 341(6144): 395–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggs W H 3rd, Meisenhelder J, Hunter T, Cavenee W K, Arden K C (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA, 96(13): 7421–7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronisz A, Godlewski J, Wallace J A, Merchant A S, Nowicki M O, Mathsyaraja H, Srinivasan R, Trimboli A J, Martin C K, Li F, Yu L, Fernandez S A, Pécot T, Rosol T J, Cory S, Hallett M, Park M, Piper M G, Marsh C B, Yee L D, Jimenez R E, Nuovo G, Lawler S E, Chiocca E A, Leone G, Ostrowski M C (2012). Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol, 14(2): 159–167

    Article  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond M J, Lin M Z, Juo P, Hu L S, Anderson M J, Arden K C, Blenis J, Greenberg M E (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6): 857–868

    Article  CAS  PubMed  Google Scholar 

  • Bucheit A D, Chen G, Siroy A, Tetzlaff M, Broaddus R, Milton D, Fox P, Bassett R, Hwu P, Gershenwald J E, Lazar A J, Davies M A (2014). Complete loss of PTEN protein expression correlates with shorter time to brain metastasis and survival in stage IIIB/C melanoma patients with BRAFV600 mutations. Clin Cancer Res, 20(21): 5527–5536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckler J L, Walsh P T, Porrett P M, Choi Y, Turka L A (2006). Cutting edge: T cell requirement for CD28 costimulation is due to negative regulation of TCR signals by PTEN. J Immunol, 177(7): 4262–4266

    Article  CAS  PubMed  Google Scholar 

  • Chen H H, Handel N, Ngeow J, Muller J, Huhn M, Yang H T, Heindl M, Berbers R M, Hegazy A N, Kionke J, Travis S, Merkenschlager A, Kiess W, Wittekind C, Walker L, Ehl S, Yehia L, Sack U, Blaser R, Rensing-Ehl A, Reifenberger J, Keith J (2016). Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol, 139(2): 607–620

    Article  PubMed  Google Scholar 

  • Chen R, Kim O, Yang J, Sato K, Eisenmann K M, McCarthy J, Chen H, Qiu Y (2001). Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem, 276(34): 31858–31862

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Trotman L C, Shaffer D, Lin H K, Dotan Z A, Niki M, Koutcher J A, Scher H I, Ludwig T, Gerald W, Cordon-Cardo C, Paolo Pandolfi P (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature, 436(7051): 725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z H, Zhu M, Yang J, Liang H, He J, He S, Wang P, Kang X, McNutt M A, Yin Y, Shen W H (2014). PTEN interacts with histone H1 and controls chromatin condensation. Cell Reports, 8(6): 2003–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crellin N K, Garcia R V, Levings M K (2007). Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood, 109(5): 2014–2022

    Article  CAS  PubMed  Google Scholar 

  • Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness G C, Wong H, Narasanna A, Chakrabarty A, Hilsenbeck S G, Huang J, Rimawi M, Schiff R, Arteaga C, Osborne C K, Chang J C (2011). Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol, 29(2): 166–173

    Article  CAS  PubMed  Google Scholar 

  • Delgoffe G M, Woo S R, Turnis M E, Gravano D M, Guy C, Overacre A E, Bettini M L, Vogel P, Finkelstein D, Bonnevier J, Workman C J, Vignali D A A (2013). Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature, 501 (7466): 252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cristofano A, Kotsi P, Peng Y F, Cordon-Cardo C, Elkon K B, Pandolfi P P (1999). Impaired Fas response and autoimmunity in Pten+/– mice. Science, 285(5436): 2122–2125

    Article  PubMed  Google Scholar 

  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi P P (1998). Pten is essential for embryonic development and tumour suppression. Nat Genet, 19(4): 348–355

    Article  PubMed  Google Scholar 

  • Dunn G P, Bruce A T, Ikeda H, Old L J, Schreiber R D (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol, 3(11): 991–998

    Article  CAS  PubMed  Google Scholar 

  • Eppihimer M J, Gunn J, Freeman G J, Greenfield E A, Chernova T, Erickson J, Leonard J P (2002). Expression and regulation of the PDL1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation, 9(2): 133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Liang J, Li J, Li Y, Liang H, Zhao X, McNuttMA, Yin Y (2015). PTEN Controls the DNA Replication Process through MCM2 in Response to Replicative Stress. Cell Reports, 13(7): 1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Francisco L M, Salinas V H, Brown K E, Vanguri V K, Freeman G J, Kuchroo V K, Sharpe A H (2009). PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med, 206(13): 3015–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galon J, Angell H K, Bedognetti D, Marincola F M (2013). The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity, 39(1): 11–26

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Cao I, SongM S, Hobbs R M, Laurent G, Giorgi C, de Boer V C, Anastasiou D, Ito K, Sasaki A T, Rameh L, Carracedo A, Vander HeidenMG, Cantley L C, Pinton P, HaigisMC, Pandolfi P P (2012). Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell, 149(1): 49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong L, Govan J M, Evans E B, Dai H, Wang E, Lee S W, Lin H K, Lazar A J, Mills G B, Lin S Y (2015). Nuclear PTEN tumorsuppressor functions through maintaining heterochromatin structure. Cell Cycle, 14(14): 2323–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg R A (2011). Hallmarks of cancer: the next generation. Cell, 144(5): 646–674

    Article  CAS  PubMed  Google Scholar 

  • He J, Kang X, Yin Y, Chao K S, Shen W H (2015). PTEN regulates DNA replication progression and stalled fork recovery. Nat Commun, 6: 7620

    Article  PubMed  PubMed Central  Google Scholar 

  • He J, Zhang Z, Ouyang M, Yang F, Hao H, Lamb K L, Yang J, Yin Y, Shen W H (2016). PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis. Nat Commun, 7: 12355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt MA, Yang H, HungM C, Izzo J G, Huang M, Lin J, Ajani J A, Wu X (2009). Genetic variations in the PI3K/PTEN/AKT/mTOR pathway are associated with clinical outcomes in esophageal cancer patients treated with chemoradiotherapy. J Clin Oncol, 27(6): 857–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh C S, Lee H M, Lio C W (2012). Selection of regulatory T cells in the thymus. Nat Rev Immunol, 12(3): 157–167

    CAS  PubMed  Google Scholar 

  • Huynh A, Du Page M, Priyadharshini B, Sage P T, Quiros J, Borges C M, Townamchai N, Gerriets V A, Rathmell J C, Sharpe A H, Bluestone J A, Turka L A (2015). Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol, 16(2): 188–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Hegde S, Knolhoff B L, Zhu Y, Herndon J M, Meyer M A, Nywening T M, Hawkins W G, Shapiro I M, Weaver D T, Pachter J A, Wang-Gillam A, De Nardo D G (2016). Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med, 22(8): 851–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josefowicz S Z, Lu L F, Rudensky A Y (2012). Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol, 30:531–564

    Article  CAS  PubMed  Google Scholar 

  • Kane L P, Andres P G, Howland K C, Abbas A K, Weiss A (2001). Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol, 2(1): 37–44

    Article  CAS  PubMed  Google Scholar 

  • Kang X, Song C, Du X, Zhang C, Liu Y, Liang L, He J, Lamb K, ShenW H, Yin Y (2015). PTEN stabilizes TOP2A and regulates the DNA decatenation. Sci Rep, 5:17873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone J A, Takayanagi H (2014). Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med, 20(1): 62–68

    Article  CAS  PubMed  Google Scholar 

  • Kral J B, Kuttke M, Schrottmaier W C, Birnecker B, Warszawska J, Wernig C, Paar H, Salzmann M, Sahin E, Brunner J S, Österreicher C, Knapp S, Assinger A, Schabbauer G (2016). Sustained PI3K Activation exacerbates BLM-induced Lung Fibrosis via activation of pro-inflammatory and pro-fibrotic pathways. Sci Rep, 6: 23034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kritikou E (2007). PTEN- a new guardian of the genome. Nat Rev Mol Cell Biol, 8(3): 179

    Article  CAS  Google Scholar 

  • Lee J J, Kim B C, Park M J, Lee Y S, Kim Y N, Lee B L, Lee J S (2011). PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ, 18(4): 666–677

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang S I, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner S H, Giovanella B C, Ittmann M, Tycko B, Hibshoosh H, Wigler M H, Parsons R (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275(5308): 1943–1947

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jia Y, Pichavant M, Loison F, Sarraj B, Kasorn A, You J, Robson B E, Umetsu D T, Mizgerd J P, Ye K, Luo H R (2009). Targeted deletion of tumor suppressor PTEN augments neutrophil function and enhances host defense in neutropenia-associated pneumonia. Blood, 113(20): 4930–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loke P, Allison J P (2003). PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci USA, 100(9): 5336–5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maehama T, Dixon J E (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem, 273(22): 13375–13378

    Article  CAS  PubMed  Google Scholar 

  • McEllin B, Camacho C V, Mukherjee B, Hahm B, Tomimatsu N, Bachoo R M, Burma S (2010). PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res, 70(13): 5457–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes-Pereira A M, Martin S A, Brough R, McCarthy A, Taylor J R, Kim J S, Waldman T, Lord C J, Ashworth A (2009). Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med, 1(6–7): 315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalek R D, Gerriets V A, Jacobs S R, Macintyre A N, Mac Iver N J, Mason E F, Sullivan S A, Nichols A G, Rathmell J C (2011). Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol, 186(6): 3299–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardella C, Clohessy J G, Alimonti A, Pandolfi P P (2011). Prosenescence therapy for cancer treatment. Nat Rev Cancer, 11(7): 503–511

    Article  CAS  PubMed  Google Scholar 

  • Newton R, Priyadharshini B, Turka L A (2016). Immunometabolism of regulatory T cells. Nat Immunol, 17(6): 618–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, Munoz-Martin M, Gomez-Lopez G, Canamero M, Mulero F, Pastor J, Martinez S, Romanos E, Mar Gonzalez-Barroso M, Rial E, Valverde A M, Bischoff J R, Serrano M (2012). Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab, 15 (3): 382–394

    Article  CAS  PubMed  Google Scholar 

  • Ouyang W, Liao W, Luo C T, Yin N, Huse M, Kim M V, Peng M, Chan P, Ma Q, Mo Y, Meijer D, Zhao K, Rudensky A Y, Atwal G, Zhang M Q, Li M O (2012). Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature, 491(7425): 554–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan F, Yu H, Dang E V, Barbi J, Pan X, Grosso J F, Jinasena D, Sharma S M, McCadden E M, Getnet D, Drake C G, Liu J O, Ostrowski MC, Pardoll D M (2009). Eos mediates Foxp3-dependent gene silencing in CD4 + regulatory T cells. Science, 325(5944): 1142–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa A, Wan L, Bonora M, Salmena L, Song M S, Hobbs R M, Lunardi A, Webster K, Ng C, Newton R H, Knoblauch N, Guarnerio J, Ito K, Turka L A, Beck A H, Pinton P, Bronson R T, Wei W, Pandolfi P P (2014). Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell, 157(3): 595–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsa A T, Waldron J S, Panner A, Crane C A, Parney I F, Barry J J, Cachola K E, Murray J C, Tihan T, Jensen M C, Mischel P S, Stokoe D, Pieper R O (2007). Loss of tumor suppressor PTEN function increases B7–H1 expression and immunoresistance in glioma. Nat Med, 13(1): 84–88

    Article  CAS  PubMed  Google Scholar 

  • Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell L N, Karoly E D, Freeman G J, Petkova V, Seth P, Li L, Boussiotis V A (2015). PD- 1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun, 6: 6692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsoukis N, Li L, Sari D, Petkova V, Boussiotis V A (2013). PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol, 33(16): 3091–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng W, Chen J Q, Liu C, Malu S, Creasy C, Tetzlaff M T, Xu C, McKenzie J A, Zhang C, Liang X, Williams L J, Deng W, Chen G, Mbofung R, Lazar A J, Torres-Cabala C A, Cooper Z A, Chen P L, Tieu T N, Spranger S, Yu X, Bernatchez C, ForgetMA, Haymaker C, Amaria R, McQuade J L, Glitza I C, Cascone T, Li H S, Kwong L N, Heffernan T P, Hu J, Bassett R L, Bosenberg M W, Woodman S E, Overwijk W W, Lizee G, Roszik J, Gajewski T F, Wargo J A, Gershenwald J E, Radvanyi L, Davies M A, Hwu P (2016). Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov, 6(2): 202–216

    Article  CAS  PubMed  Google Scholar 

  • Podsypanina K, Ellenson L H, Nemes A, Gu J, Tamura M, Yamada K M, Cordon-Cardo C, Catoretti G, Fisher P E, Parsons R (1999). Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA, 96(4): 1563–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riou C, Yassine-Diab B, Van grevenynghe J, Somogyi R, Greller L D, Gagnon D, Gimmig S, Wilkinson P, Shi Y, Cameron M J, Campos- Gonzalez R, Balderas R S, Kelvin D, Sekaly R P, Haddad E K (2007). Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J Exp Med, 204(1): 79–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber R D, Old L J, Smyth M J (2011). Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 331(6024): 1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Sharma M D, Huang L, Choi J H, Lee E J, Wilson J M, Lemos H, Pan F, Blazar B R, Pardoll D M, Mellor A L, Shi H, Munn D H (2013). An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor eos. Immunity, 38(5): 998–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M D, Shinde R, McGaha T L, Huang L, Holmgaard R B, Wolchok J D, Mautino M R, Celis E, Sharpe A H, Francisco L M, Powell J D, Yagita H, Mellor A L, Blazar B R, Munn D H (2015). The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci Adv, 1(10): e1500845

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Allison J P (2015). The future of immune checkpoint therapy. Science, 348(6230): 56–61

    Article  CAS  PubMed  Google Scholar 

  • Shen W H, Balajee A S, Wang J, Wu H, Eng C, Pandolfi P P, Yin Y (2007). Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell, 128(1): 157–170

    Article  CAS  PubMed  Google Scholar 

  • Shi L Z, Wang R, Huang G, Vogel P, Neale G, Green D R, Chi H (2011). HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med, 208(7): 1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H (2015). Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol, 16(2): 178–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song M S, Carracedo A, Salmena L, Song S J, Egia A, Malumbres M, Pandolfi P P (2011). Nuclear PTEN regulates the APC-CDH1 tumorsuppressive complex in a phosphatase-independent manner. Cell, 144 (2): 187–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soond D R, Garcon F, Patton D T, Rolf J, Turner M, Scudamore C, Garden O A, Okkenhaug K (2012). Pten loss in CD4 T cells enhances their helper function but does not lead to autoimmunity or lymphoma. J Immunol, 188(12): 5935–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stambolic V, Tsao M S, Macpherson D, Suzuki A, Chapman W B, Mak T W (2000). High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/– mice. Cancer Res, 60(13): 3605–3611

    CAS  PubMed  Google Scholar 

  • Steck P A, Pershouse M A, Jasser S A, Yung W K, Lin H, Ligon A H, Langford L A, Baumgard M L, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng D H R, Tavtigian S V (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet, 15(4): 356–362

    Article  CAS  PubMed  Google Scholar 

  • Subramanian K K, Jia Y, Zhu D, Simms B T, Jo H, Hattori H, You J, Mizgerd J P, Luo H R (2007). Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood, 109(9): 4028–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Huang C, He J, Lamb K L, Kang X, Gu T, Shen W H, Yin Y (2014). PTEN C-terminal deletion causes genomic instability and tumor development. Cell Reports, 6(5): 844–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Yamaguchi M T, Ohteki T, Sasaki T, Kaisho T, Kimura Y, Yoshida R, Wakeham A, Higuchi T, Fukumoto M, Tsubata T, Ohashi P S, Koyasu S, Penninger J M, Nakano T, Mak T W (2001). T cellspecific loss of Pten leads to defects in central and peripheral tolerance. Immunity, 14(5): 523–534

    Article  CAS  PubMed  Google Scholar 

  • Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM (1998). Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science, 280(5369): 1614–1617

    Article  CAS  PubMed  Google Scholar 

  • Teng M W, Galon J, Fridman W H, Smyth M J (2015). From mice to humans: developments in cancer immunoediting. J Clin Invest, 125 (9): 3338–3346

    Article  PubMed  PubMed Central  Google Scholar 

  • Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T, Okazaki T, Honjo T (2011). IFN-alpha directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol, 186(5): 2772–2779

    Article  CAS  PubMed  Google Scholar 

  • Torres J, Pulido R (2001). The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem, 276(2): 993–998

    CAS  PubMed  Google Scholar 

  • Toso A, Revandkar A, Di Mitri D, Guccini I, Proietti M, Sarti M, Pinton S, Zhang J, Kalathur M, Civenni G, Jarrossay D, Montani E, Marini C, Garcia-Escudero R, Scanziani E, Grassi F, Pandolfi P P, Catapano C V, Alimonti A (2014). Enhancing chemotherapy efficacy in Ptendeficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Reports, 9(1): 75–89

    Article  CAS  PubMed  Google Scholar 

  • Trimboli A J, Cantemir-Stone C Z, Li F, Wallace J A, Merchant A, Creasap N, Thompson J C, Caserta E, Wang H, Chong J L, Naidu S, Wei G, Sharma S M, Stephens J A, Fernandez S A, Gurcan M N, Weinstein M B, Barsky S H, Yee L, Rosol T J, Stromberg P C, Robinson ML, Pepin F, Hallett M, Park M, Ostrowski MC, Leone G (2009). Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 461(7267): 1084–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Ree J H, Nam H J, Jeganathan K B, Kanakkanthara A, van Deursen J M (2016). Pten regulates spindle pole movement through Dlg1- mediated recruitment of Eg5 to centrosomes. Nat Cell Biol, 18(7): 814–821

    PubMed  PubMed Central  Google Scholar 

  • Vazquez F, Ramaswamy S, Nakamura N, Sellers W R (2000). Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol, 20(14): 5010–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesely M D, KershawM H, Schreiber R D, Smyth M J (2011). Natural innate and adaptive immunity to cancer. Annu Rev Immunol, 29: 235–271

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li Y, Wang P, Liang H, Cui M, Zhu M, Guo L, Su Q, Sun Y, McNutt M A, Yin Y (2015). PTEN regulates RPA1 and protects DNA replication forks. Cell Res, 25(11): 1189–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav M, Louvet C, Davini D, Gardner JM, Martinez M- Llordella S, Bailey-Bucktrout B A, Anthony F M, Sverdrup R, Head D J, Kuster P, Ruminski D, Weiss D, V J Aon Schack, Bluestone (2012). Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med, 209(10): 1713–1722, S1711–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Shen W H (2008). PTEN: a new guardian of the genome. Oncogene, 27(41): 5443–5453

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hou S Q, He J, Gu T, Yin Y, Shen W H (2016). PTEN regulates PLK1 and controls chromosomal stability during cell division. Cell Cycle, 15(18): 2476–2485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory is supported by NIH grant R01GM100478 and the Irma T. Hirschl/Monique Weill-Caulier Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen H. Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandmaier, A., Hou, SQ., Demaria, S. et al. PTEN at the interface of immune tolerance and tumor suppression. Front. Biol. 12, 163–174 (2017). https://doi.org/10.1007/s11515-017-1443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1443-5

Keywords

Navigation