Skip to main content
Log in

Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington’s Disease

  • Review
  • Published:
Frontiers in Biology

Abstract

BACKGROUND

Huntington’s Disease (HD) is an autosomal dominant neurodegenerative disease causing severe neurodegeneration of the striatum as well as marked cognitive and motor disabilities. Excitotoxicity, caused by overstimulation of NMDA receptors (NMDARs) has been shown to have a key role in the neuropathogenesis of HD, suggesting that targeting NMDAR-dependent signaling may be an effective clinical approach for HD. However, broad NMDAR antagonists are generally poor therapeutics in clinical practice. It has been suggested that GluN2A-containing, synaptically located NMDARs activate cell survival signaling pathways, while GluN2B-containing, primarily extrasynaptic NMDARs trigger cell death signaling. A better approach to development of effective therapeutics for HD may be to target, specifically, the cell-death specific pathways associated with extrasynaptic GluN2B NMDAR activation, while maintaining or potentiating the cellsurvival activity of GluN2A-NMDARs.

OBJECTIVE

This review outlines the role of NMDAR-mediated excitotoxicity in HD and overviews current efforts to develop better therapeutics for HD where NMDAR excitotoxicity is the target.

METHODS

A systematic review process was conducted using the PubMed search engine focusing on research conducted in the past 5-10 years. 235 articles were consulted for the review, with key search terms including “Huntington’s Disease,” “excitotoxicity,” “NMDAR” and “therapeutics.”

RESULTS

A wide range of NMDAR excitotoxicity-based targets for HD were identified and reviewed, including targeting NMDARs directly by blocking GluN2B, extrasynaptic NMDARs and/or potentiating GluN2A, synaptic NMDARs, targeting glutamate release or uptake, or targeting specific downstream cell-death signaling of NMDARs.

CONCLUSION

The current review identifies NMDAR-mediated excitotoxicity as a key player in HD pathogenesis and points to various excitotoxicity-focused targets as potential future preventative therapeutics for HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aamodt S M, Constantine-Paton M (1999). The role of neural activity in synaptic development and its implications for adult brain function. Adv Neurol, 79: 133–144

    CAS  PubMed  Google Scholar 

  • Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd J W, Wang Y T, Salter M W, Tymianski M (2002). Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science, 298(5594): 846–850

    Article  CAS  PubMed  Google Scholar 

  • Abiltrub M, Shattock M (2013). Cardiac dysautonomia in Huntington’s disease. J Huntington Dis, 2(3): 251–261

    Google Scholar 

  • Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994). Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol, 347(1): 150–160

    Article  CAS  PubMed  Google Scholar 

  • Albin R L, Young A B, Penney J B, Handelin B, Balfour R, Anderson K D, Markel D S, Tourtellotte WW, Reiner A (1990). Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington’s disease. N Engl J Med, 322(18): 1293–1298

    Article  CAS  PubMed  Google Scholar 

  • Arai A, Vanderklish P, Kessler M, Lee K, Lynch G (1991). A brief period of hypoxia causes proteolysis of cytoskeletal proteins in hippocampal slices. Brain Res, 555(2): 276–280

    Article  CAS  PubMed  Google Scholar 

  • Arlinghaus L, Mehdi S, Lee K S (1991). Improved posthypoxic recovery with a membrane-permeable calpain inhibitor. Eur J Pharmacol, 209 (1-2): 123–125

    Article  CAS  PubMed  Google Scholar 

  • Balázs R, Hack N, Jørgensen O S (1988). Stimulation of the receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci Lett, 87 (1–2): 80–86

    Article  PubMed  Google Scholar 

  • Balázs R, Hack N, Jørgensen O S ( 1990). Interactive effects involving different classes of excitatory amino acid receptors and the survival of cerebellar granule cells in culture. Int J Dev Neurosci, 8(4): 347–359

    Article  PubMed  Google Scholar 

  • Balázs R, Hack N, Jørgensen O S, Cotman C W (1989). N-methyl-Daspartate promotes the survival of cerebellar granule cells: pharmacological characterization. Neurosci Lett, 101(3): 241–246

    Article  PubMed  Google Scholar 

  • Balázs R, Jørgensen O S, Hack N (1988). N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience, 27(2): 437–451

    Article  PubMed  Google Scholar 

  • Bano D, Young K W, Guerin C J, Lefeuvre R, Rothwell N J, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005). Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell, 120(2): 275–285

    Article  CAS  PubMed  Google Scholar 

  • Beal M F (1998). Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol, 44 (3 Suppl 1): S110–S114

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz K J, Martin J B (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature, 321(6066): 168–171

    Article  CAS  PubMed  Google Scholar 

  • Beighton P, Hayden M R (1981). Huntington’s chorea. S Afr Med J, 59 (8): 250

    CAS  PubMed  Google Scholar 

  • Benveniste M, Mayer M L (1991). Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J, 59(3): 560–573

    CAS  PubMed  Google Scholar 

  • Berliocchi L, Bano D, Nicotera P (2005). Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci, 360(1464): 2255–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss T V P, Collingridge G L (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361(6407): 31–39

    Article  CAS  PubMed  Google Scholar 

  • Brenman J E, Chao D S, Gee S H, McGee A W, Craven S E, Santillano D R, Wu Z, Huang F, Xia H, Peters M F, Froehner S C, Bredt D S (1996). Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell, 84(5): 757–767

    Article  CAS  PubMed  Google Scholar 

  • Brenneman D E, Forsythe I D, Nicol T, Nelson P G (1990a). N-methyl- D-aspartate receptors influence neuronal survival in developing spinal cord cultures. Brain Res Dev Brain Res, 51(1): 63–68

    Article  CAS  PubMed  Google Scholar 

  • Brenneman D E, Yu C, Nelson P G (1990b). Multi-determinate regulation of neuronal survival: neuropeptides, excitatory amino acids and bioelectric activity. Int J Dev Neurosci, 8(4): 371–378

    Article  CAS  PubMed  Google Scholar 

  • Burde R M, Schainker B, Kayes J (1971). Acute effect of oral and subcutaneous administration of monosodium glutamate on the arcuate nucleus of the hypothalamus in mice and rats. Nature, 233(5314): 58–60

    Article  CAS  PubMed  Google Scholar 

  • Burns L H, Pakzaban P, Deacon TW, Brownell A L, Tatter S B, Jenkins B G, Isacson O (1995). Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease. Neuroscience, 64(4): 1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Carroll J, Southwell A L, Graham R K, Lerch J P, Ehrnhoefer D E, Cao L P, Zhang W N, Deng Y, Bissada N, Henkelman R M, Hayden M R (2011). Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease. Moler Neurodegener, 6 (1): 59

    Article  Google Scholar 

  • Cepeda C, Hurst R S, Calvert C R, Hernndez-Echeagaray E, Nguyen O K, Jocoy E, Christian L J, Ariano MA, Levine MS (2003). Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease. J Neurosci, 23(3): 961–969

    CAS  PubMed  Google Scholar 

  • Cepeda C, Itri J N, Flores-Hernández J, Hurst R S, Calvert C R, Levine M S (2001). Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat. Eur J Neurosci, 14(10): 1577–1589

    Article  CAS  PubMed  Google Scholar 

  • Chapman D E, Keefe K A, Wilcox K S (2003). Evidence for functionally distinct synaptic NMDA receptors in ventromedial versus dorsolateral striatum. J Neurophysiol, 89(1): 69–80

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Lu T J, Chen X J, Zhou Y, Chen Q, Feng X Y, Xu L, Duan W H, Xiong Z Q (2008). Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke, 39(11): 3042–3048

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Ona V O, Li M, Ferrante R J, Fink K B, Zhu S, Bian J, Guo L, Farrell L A, Hersch S M, Hobbs W, Vonsattel J P, Cha J H, Friedlander RM (2000). Minocycline inhibits caspase-1 and caspase- 3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med, 6(7): 797–801

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Luo T, Wellington C, Metzler M, McCutcheon K, Hayden MR, Raymond L A (1999). Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem, 72(5): 1890–1898

    Article  CAS  PubMed  Google Scholar 

  • Choi D W (1995). Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci, 18(2): 58–60

    Article  CAS  PubMed  Google Scholar 

  • Choi D W, Koh J Y, Peters S (1988). Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci, 8(1): 185–196

    CAS  PubMed  Google Scholar 

  • Clements J D, Westbrook G L (1991). Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-Daspartate receptor. Neuron, 7(4): 605–613

    Article  CAS  PubMed  Google Scholar 

  • Cottrell J R, Dubé G R, Egles C, Liu G (2000). Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J Neurophysiol, 84(3): 1573–1587

    CAS  PubMed  Google Scholar 

  • Cowan C M, Fan M M, Fan J, Shehadeh J, Zhang L Y, Graham R K, Hayden M R, Raymond L A (2008). Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity. J Neurosci, 28(48): 12725–12735

    Article  CAS  PubMed  Google Scholar 

  • Coyle J T, Schwarcz R (1976). Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature, 263(5574): 244–246

    Article  CAS  PubMed  Google Scholar 

  • Craven S E, El-Husseini A E, Bredt D S (1999). Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron, 22(3): 497–509

    Article  CAS  PubMed  Google Scholar 

  • Cross A J, Slater P, Reynolds G P (1986). Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington’s disease. Neurosci Lett, 67(2): 198–202

    Article  CAS  PubMed  Google Scholar 

  • Cull-Candy S, Brickley S, Farrant M (2001). NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol, 11(3): 327–335

    Article  CAS  PubMed  Google Scholar 

  • Cull-Candy S G, Leszkiewicz D N (2004). Role of distinct NMDA receptor subtypes at central synapses. Sci STKE, 2004 (255): re16

    PubMed  Google Scholar 

  • Dau A, Gladding C M, Sepers M D, Raymond L A (2014). Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiol Dis, 62: 533–542

    Article  CAS  PubMed  Google Scholar 

  • De Ridder M N, Simon M J, Siman R, Auberson Y P, Raghupathi R, Meaney D F (2006). Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition. Neurobiol Dis, 22(1): 165–176

    Article  CAS  Google Scholar 

  • Didier M, Roux P, Piechaczyk M, Verrier B, Bockaert J, Pin J P (1989). Cerebellar granule cell survival and maturation induced by K + and NMDA correlate with c-fos proto-oncogene expression. Neurosci Lett, 107 (1-3): 55–62

    Article  CAS  PubMed  Google Scholar 

  • Di Figlia M (1990). Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci, 13(7): 286–289

    Article  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis S F (1999). The glutamate receptor ion channels. Pharmacol Rev, 51(1): 7–61

    CAS  PubMed  Google Scholar 

  • Dragunow M, Faull R L, Lawlor P, Beilharz E J, Singleton K, Walker E B, Mee E (1995). In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport, 6(7): 1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M E (2012). Huntington’s disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease. Neurotherapeutics, 9(2): 270–284

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Husseini A E, Schnell E, Chetkovich D M, Nicoll R A, Bredt D S (2000). PSD-95 involvement in maturation of excitatory synapses. Science, 290(5495): 1364–1368

    CAS  PubMed  Google Scholar 

  • Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Déglon N, Ferrante R J, Bonvento G (2010). In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet, 19(15): 3053–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Cowan C M, Zhang L Y, Hayden M R, Raymond L A (2009). Interaction of postsynaptic density protein-95 with NMDA receptors influences excitotoxicity in the yeast artificial chromosome mouse model of Huntington’s disease. J Neurosci, 29(35): 10928–10938

    Article  CAS  PubMed  Google Scholar 

  • Fan M M Y, Fernandes H B, Zhang L Y, Hayden M R, Raymond L A (2007). Altered NMDA receptor trafficking in a yeast artificial chromosome transgenic mouse model of Huntington’s disease. J Neurosci, 27(14): 3768–3779

    Article  CAS  PubMed  Google Scholar 

  • Fan M M Y, Raymond L A (2007). N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol, 81 (5-6): 272–293

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Jin W Y, Lu J, Wang J, Wang Y T (2014). Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci, 17(3): 471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante R J, Kowall NW, BealMF, Martin J B, Bird E D, Richardson E P (1987). Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol, 46(1): 12–27

    Article  CAS  PubMed  Google Scholar 

  • Ferrante R J, Kowall N W, Cipolloni P B, Storey E, Beal M F (1993). Excitotoxin lesions in primates as a model for Huntington’s disease: histopathologic and neurochemical characterization. Exp Neurol, 119(1): 46–71

    Article  CAS  PubMed  Google Scholar 

  • Fischer G, Mutel V, Trube G, Malherbe P, Kew J N, Mohacsi E, HeitzM P, Kemp J A (1997). Ro 25-6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther, 283(3): 1285–1292

    CAS  PubMed  Google Scholar 

  • Flint A C, Maisch U S, Weishaupt J H, Kriegstein A R, Monyer H (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci, 17(7): 2469–2476

    CAS  PubMed  Google Scholar 

  • Foster K A, McLaughlin N, Edbauer D, Phillips M, Bolton A, Constantine-Paton M, Sheng M (2010). Distinct roles of NR2A and NR2B cytoplasmic tails in long-term potentiation. J Neurosci, 30(7): 2676–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin J L, Johnson E M Jr (1992). Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends Neurosci, 15(12): 501–508

    Article  CAS  PubMed  Google Scholar 

  • Freedman J K, Potts A M (1962). Repression of glutaminase I in the rat retina by administration of sodium-L-glutamate. Invest Ophthalmol, 1: 118–121

    CAS  PubMed  Google Scholar 

  • Friedman L K (2006). Calcium: a role for neuroprotection and sustained adaptation. Mol Interv, 6(6): 315–329

    Article  PubMed  Google Scholar 

  • Gafni J, Ellerby L M (2002). Calpain activation in Huntington’s disease. J Neurosci, 22(12): 4842–4849

    CAS  PubMed  Google Scholar 

  • Gallagher M J, Huang H, Pritchett D B, Lynch D R (1996). Interactions between ifenprodil and the NR2B subunit of the N-methyl-Daspartate receptor. J Biol Chem, 271(16): 9603–9611

    Article  CAS  PubMed  Google Scholar 

  • Gascón S, Sobrado M, Roda J M, Rodríguez-Peña A, Díaz-Guerra M (2008). Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Mol Psychiatry, 13(1): 99–114

    Article  PubMed  CAS  Google Scholar 

  • Gladding C M, Fan J, Zhang L Y, Wang L, Xu J, Li E H, Lombroso P J, Raymond L A (2014). Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington’s disease mouse model. J Neurochem, 130(1): 145–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladding C M, Raymond L A (2011). Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci, 48(4): 308–320

    Article  CAS  PubMed  Google Scholar 

  • Gladding C M, Sepers M D, Xu J, Zhang L Y, Milnerwood A J, Lombroso P J, Raymond L A (2012). Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington’s disease mouse model. Hum Mol Genet, 21(17): 3739–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotti B, Duverger D, Bertin J, Carter C, Dupont R, Frost J, Gaudilliere B, MacKenzie E T, Rousseau J, Scatton B, et al (1988). Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. J Pharmacol Exp Ther, 247(3): 1211–1221

    CAS  PubMed  Google Scholar 

  • Gouix E, Léveillé F, Nicole O, Melon C, Had-Aissouni L, Buisson A (2009). Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. Mol Cell Neurosci, 40(4): 463–473

    Article  CAS  PubMed  Google Scholar 

  • Graham D, Darles J, Langer S (1992). The neuroprotective properties of ifenprodil, a novel NMDA receptor antagonist, in neuronal cell culture toxicity studies. Eur J Pharmacol, 226(4): 373–376

    Article  CAS  PubMed  Google Scholar 

  • Graham R K, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi M A, Metzler M, Bissada N, Wang L, Faull R L, Gray M, Yang X W, Raymond L A, Hayden M R (2010). Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci, 30(45): 15019–15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham R K, Deng Y, Slow E J, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby S C, Doty C N, Roy S, Wellington C L, Leavitt B R, Raymond L A, Nicholson DW, Hayden M R (2006a). Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell, 125(6): 1179–1191

    Article  CAS  PubMed  Google Scholar 

  • Graham R K, Ehrnhoefer D E, Hayden M R (2011). Caspase-6 and neurodegeneration. Trends Neurosci, 34(12): 646–656

    Article  CAS  PubMed  Google Scholar 

  • Graham R K, Pouladi M A, Joshi P, Lu G, Deng Y, Wu N P, Figueroa B E, Metzler M, Andr V M, Slow E J, Raymond L, Friedlander R, Levine M S, Leavitt B R, Hayden M R (2009). Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J Neurosci, 29(7): 2193–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham R K, Slow E J, Deng Y, Bissada N, Lu G, Pearson J, Shehadeh J, Leavitt B R, Raymond L A, Hayden M R (2006b). Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models. Neurobiol Dis, 21(2): 444–455

    Article  CAS  PubMed  Google Scholar 

  • Graveland G A, Williams R S, Di Figlia M (1985). Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science, 227(4688): 770–773

    Article  CAS  PubMed  Google Scholar 

  • Groc L, Heine M, Cousins S L, Stephenson F A, Lounis B, Cognet L, Choquet D (2006). NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci U S A, 103(49): 18769–18774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossberg G T, Thomas S J (2009). Memantine: a review of studies into its safety and efficacy in treating Alzheimer's disease and other dementias. Clin Interv Aging, 4: 367–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Guidetti P, Bates G P, Graham R K, Hayden M R, Leavitt B R, MacDonald M E, Slow E J, Wheeler V C, Woodman B, Schwarcz R (2006). Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis, 23(1): 190–197

    Article  CAS  PubMed  Google Scholar 

  • Guidetti P, Luthi-Carter R E, Augood S J, Schwarcz R (2004). Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis, 17(3): 455–461

    Article  CAS  PubMed  Google Scholar 

  • Guttmann R P, Baker D L, Seifert K M, Cohen A S, Coulter D A, Lynch D R (2001). Specific proteolysis of the NR2 subunit at multiple sites by calpain. J Neurochem, 78(5): 1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Guttmann R P, Sokol S, Baker D L, Simpkins K L, Dong Y, Lynch D R (2002). Proteolysis of the N-methyl-d-aspartate receptor by calpain in situ. J Pharmacol Exp Ther, 302(3): 1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Hansson O, Guatteo E, Mercuri N B, Bernardi G, Li X J, Castilho R F, Brundin P (2001). Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene. Eur J Neurosci, 14(9): 1492–1504

    Article  CAS  PubMed  Google Scholar 

  • Hantraye P, Riche D, Maziere M, Isacson O (1990). A primate model of Huntington’s disease: behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp Neurol, 108(2): 91–104

    Article  CAS  PubMed  Google Scholar 

  • Hardingham G E, Bading H (2003). The Yin and Yang of NMDA receptor signalling. Trends Neurosci, 26(2): 81–89

    Article  CAS  PubMed  Google Scholar 

  • Hardingham G E, Bading H (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 11(10): 682–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardingham G E, Fukunaga Y, Bading H (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci, 5(5): 405–414

    CAS  PubMed  Google Scholar 

  • Harjes P, Wanker E E (2003). The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci, 28(8): 425–433

    Article  CAS  PubMed  Google Scholar 

  • Harris A Z, Pettit D L (2007). Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. J Physiol, 584 (Pt 2): 509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassel B, Tessler S, Faull R L, Emson P C (2008). Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem Res, 33(2): 232–237

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Thomas G M, Huganir R L (2009). Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron, 64(2): 213–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinsen H, Rüb U, Gangnus D, Jungkunz G, Bauer M, Ulmar G, Bethke B, Schüler M, Böcker F, Eisenmenger W, Götz M, Strik M (1996). Nerve cell loss in the thalamic centromedian-parafascicular complex in patients with Huntington’s disease. Acta Neuropathol, 91(2): 161–168

    Article  CAS  PubMed  Google Scholar 

  • Hermel E, Gafni J, Propp S S, Leavitt B R, Wellington C L, Young J E, Hackam A S, Logvinova A V, Peel A L, Chen S F, Hook V, Singaraja R, Krajewski S, Goldsmith P C, Ellerby HM, HaydenMR, Bredesen D E, Ellerby L M (2004). Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ, 11(4): 424–438

    Article  CAS  PubMed  Google Scholar 

  • Hodges A, Strand A D, Aragaki A K, Kuhn A, Sengstag T, Hughes G, Elliston L A, Hartog C, Goldstein D R, Thu D, Hollingsworth Z R, Collin F, Synek B, Holmans P A, Young A B, Wexler N S, Delorenzi M, Kooperberg C, Augood S J, Faull R L, Olson JM, Jones L, Luthi-Carter R (2006). Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet, 15(6): 965–977

    Article  CAS  PubMed  Google Scholar 

  • Hodgson J G, Agopyan N, Gutekunst C A, Leavitt B R, Le Piane F, Singaraja R, Smith D J, Bissada N, McCutcheon K, Nasir J, Jamot L, Li X J, Stevens M E, Rosemond E, Roder J C, Phillips A G, Rubin E M, Hersch S M, Hayden M R (1999). A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23(1): 181–192

    Article  CAS  PubMed  Google Scholar 

  • Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, Burns A, Dening T, Findlay D, Holmes C, Hughes A, Jacoby R, Jones R, Jones R, McKeith I, Macharouthu A, O’Brien J, Passmore P, Sheehan B, Juszczak E, Katona C, Hills R, Knapp M, Ballard C, Brown R, Banerjee S, Onions C, Griffin M, Adams J, Gray R, Johnson T, Bentham P, Phillips P (2012). Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med, 366(10): 893–903

    Article  CAS  PubMed  Google Scholar 

  • Huang K, KangMH, Askew C, Kang R, Sanders S S, Wan J, Davis N G, Hayden M R (2010). Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol Dis, 40(1): 207–215

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Yanai A, Kang R, Arstikaitis P, Singaraja R R, Metzler M, Mullard A, Haigh B, Gauthier-Campbell C, Gutekunst C A, Hayden MR, El-Husseini A (2004). Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron, 44(6): 977–986

    Article  CAS  PubMed  Google Scholar 

  • Hynd M R, Scott H L, Dodd P R (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int, 45(5): 583–595

    Article  CAS  PubMed  Google Scholar 

  • Ikonomidou C, Turski L (2002). Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol, 1(6): 383–386

  • Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, et al (1993). Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem, 268(4): 2836–2843

    CAS  PubMed  Google Scholar 

  • Izumi Y, Tokuda K, Zorumski C F (2008). Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase. Hippocampus, 18(3): 258–265

    Article  CAS  PubMed  Google Scholar 

  • Jarabek B R (2003). Regulation of proteins affecting NMDA receptorinduced excitotoxicity in a Huntington’s mouse model. Brain, 127(3): 505–516

    Article  PubMed  Google Scholar 

  • Johnson J W, Ascher P (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature, 325(6104): 529–531

    Article  CAS  PubMed  Google Scholar 

  • Johnston M V (2005). Excitotoxicity in perinatal brain injury. Brain Pathol, 15(3): 234–240

    Article  CAS  PubMed  Google Scholar 

  • Kaltenbach L S, Romero E, Becklin R R, Chettier R, Bell R, Phansalkar A, Strand A, Torcassi C, Savage J, Hurlburt A, Cha G H, Ukani L, Chepanoske C L, Zhen Y, Sahasrabudhe S, Olson J, Kurschner C, Ellerby L M, Peltier J M, Botas J, Hughes R E (2007). Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet, 3 (5): e82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kandel E R, Schwartz J H, Jessell T M (1995). Essentials of Neural Science and Behavior. McGraw Hill Professional

    Google Scholar 

  • Kassubek J, Bernhard Landwehrmeyer G, Ecker D, Juengling F D, Muche R, Schuller S, Weindl A, Peinemann A (2004). Global cerebral atrophy in early stages of Huntington’s disease: quantitative MRI study. Neuroreport, 15(2): 363–365

    Article  PubMed  Google Scholar 

  • Katagiri H, Tanaka K, Manabe T (2001). Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction. Eur J Neurosci, 14(3): 547–553

    Article  CAS  PubMed  Google Scholar 

  • Katsura K, Ekholm A, Siesjö B K (1992). Coupling among changes in energy metabolism, acid-base homeostasis, and ion fluxes in ischemia. Can J Physiol Pharmacol, 70 (Suppl): S170–S175

    Article  CAS  PubMed  Google Scholar 

  • Kaufman AM, Milnerwood A J, Sepers MD, Coquinco A, She K, Wang L, Lee H, Craig A M, Cynader M, Raymond L A (2012). Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci, 32(12): 3992–4003

    Article  CAS  PubMed  Google Scholar 

  • Kew J N, Trube G, Kemp J A (1996). A novel mechanism of activitydependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurones. J Physiol, 497 (Pt 3): 761–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Velier J, Chase K, Laforet G, Kalchman M A, Hayden M R, Won L, Heller A, Aronin N, Difiglia M (1999). Forskolin and dopamine D1 receptor activation increase huntingtin’s association with endosomes in immortalized neuronal cells of striatal origin. Neuroscience, 89(4): 1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Klapstein G J, Fisher R S, Zanjani H, Cepeda C, Jokel E S, Chesselet M F, Levine M S (2001). Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington’s disease transgenic mice. J Neurophysiol, 86(6): 2667–2677

    CAS  PubMed  Google Scholar 

  • Koike T, Martin D P, Johnson E M (1989). Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc Natl Acad Sci U S A, 86(16): 6421–6425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornau H C, Schenker L T, Kennedy MB, Seeburg P H (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science, 269(5231): 1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Koutsilieri E, Riederer P (2007). Excitotoxicity and new antiglutamatergic strategies in Parkinson’s disease and Alzheimer’s disease. Parkinsonism Relat Disord, 13 (Suppl 3): S329–S331

    Article  PubMed  Google Scholar 

  • Kremer B, Clark C M, Almqvist E W, Raymond L A, Graf P, Jacova C, Mezei M, Hardy M A, Snow B, Martin W, Hayden M R (1999). Influence of lamotrigine on progression of early Huntington disease: a randomized clinical trial. Neurology, 53(5): 1000–1011

    Article  CAS  PubMed  Google Scholar 

  • Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992). Molecular diversity of the NMDA receptor channel. Nature, 358(6381): 36–41

    Article  CAS  PubMed  Google Scholar 

  • Lai T W, Wang Y T (2010). Fashioning drugs for stroke. Nat Med, 16(12): 1376–1378

    Article  CAS  PubMed  Google Scholar 

  • Lai T W, Zhang S, Wang Y T (2014). Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol, 115: 157–188

    Article  CAS  PubMed  Google Scholar 

  • Lan J Y, Skeberdis V A, Jover T, Grooms S Y, Lin Y, Araneda R C, Zheng X, Bennett M V, Zukin R S (2001). Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci, 4(4): 382–390

    Article  CAS  PubMed  Google Scholar 

  • Lee K S, Frank S, Vanderklish P, Arai A, Lynch G (1991). Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci U S A, 88(16): 7233–7237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M S, Kwon Y T, Li M, Peng J, Friedlander R M, Tsai L H (2000). Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature, 405(6784): 360–364

    Article  CAS  PubMed  Google Scholar 

  • Lester R A J, Clements J D, Westbrook G L, Jahr C E (1990). Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature, 346(6284): 565–567

    Article  CAS  PubMed  Google Scholar 

  • Levine M S, Klapstein G J, Koppel A, Gruen E, Cepeda C, Vargas M E, Jokel E S, Carpenter E M, Zanjani H, Hurst R S, Efstratiadis A, Zeitlin S, ChesseletMF (1999). Enhanced sensitivity to N-methyl-Daspartate receptor activation in transgenic and knockin mouse models of Huntington's disease. J Neurosci Res, 58 (4):515–532

    Article  CAS  PubMed  Google Scholar 

  • Levine M S, Klapstein G J, Koppel A, Gruen E, Cepeda C, Vargas M E, Jokel E S, Carpenter E M, Zanjani H, Hurst R S, Efstratiadis A, Zeitlin S, ChesseletMF (1999). Enhanced sensitivity to N-methyl-Daspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res, 58(4): 515–532

    Article  CAS  PubMed  Google Scholar 

  • Li J H, Wang Y H, Wolfe B B, Krueger K E, Corsi L, Stocca G, Vicini S (1998). Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical neurons. Eur J Neurosci, 10(5): 1704–1715

    Article  CAS  PubMed  Google Scholar 

  • Li L, Murphy T H, Hayden M R, Raymond L A (2004). Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. J Neurophysiol, 92(5): 2738–2746

    Article  CAS  PubMed  Google Scholar 

  • Li X, Standley C, Sapp E, Valencia A, Qin Z H, Kegel K B, Yoder J, Comer-Tierney L A, Esteves M, Chase K, Alexander J, Masso N, Sobin L, Bellve K, Tuft R, Lifshitz L, Fogarty K, Aronin N, Di Figlia M (2009). Mutant Huntingtin Impairs Vesicle Formation from Recycling Endosomes by Interfering with Rab11 Activity. Mol Cell Biol, 29(22): 6106–6116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Jin M, Koeglsperger T, Shepardson N E, Shankar G M, Selkoe D J (2011). Soluble Aß oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2 Bcontaining NMDA receptors. J Neurosci, 31(8): 6627–6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liévens J C, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L, Bates G P (2001). Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis, 8(5): 807–821

    Article  PubMed  CAS  Google Scholar 

  • Lim D, Fedrizzi L, Tartari M, Zuccato C, Cattaneo E, Brini M, Carafoli E (2008). Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem, 283(9): 5780–5789

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Skeberdis V A, Francesconi A, Bennett M V, Zukin R S (2004). Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J Neurosci, 24(45): 10138–10148

    Article  CAS  PubMed  Google Scholar 

  • Lipton S A (2004a). Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx, 1(1): 101–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipton S A (2004b). Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis, 6 (6 Suppl): S61–S74

    CAS  PubMed  Google Scholar 

  • Liu D D, Yang Q, Li S T (2013). Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull, 93: 10–16

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wong T P, Pozza M F, Lingenhoehl K, Wang Y, Sheng M, Auberson Y P, Wang Y T (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 304(5673): 1021–1024

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wong T P, Aarts M, Rooyakkers A, Liu L, Lai T W, Wu D C, Lu J, Tymianski M, Craig A M, Wang Y T (2007). NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci, 27(11): 2846–2857

    Article  CAS  PubMed  Google Scholar 

  • López-Menéndez C, Gascón S, Sobrado M, Vidaurre O G, Higuero AM, Rodríguez-Peña A, Iglesias T, Díaz-Guerra M (2009). Kidins220/ ARMS downregulation by excitotoxic activation of NMDARs reveals its involvement in neuronal survival and death pathways. J Cell Sci, 122 (Pt 19): 3554–3565

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Man H, Ju W, Trimble W S, MacDonald J F, Wang Y T (2001). Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron, 29(1): 243–254

    Article  CAS  PubMed  Google Scholar 

  • Lucas D R, Newhouse J P (1957). The toxic effect of sodium Lglutamate on the inner layers of the retina. AMA Arch Ophthalmol, 58(2): 193–201

    Article  CAS  PubMed  Google Scholar 

  • MacDermott A B, Mayer M L, Westbrook G L, Smith S J, Barker J L (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature, 321(6069): 519–522

    Article  CAS  PubMed  Google Scholar 

  • MacDonald M E, et al, and the The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6): 971–983

    Article  Google Scholar 

  • Man H Y, Wang Q, Lu W Y, Ju W, Ahmadian G, Liu L, D’Souza S, Wong T P, Taghibiglou C, Lu J, Becker L E, Pei L, Liu F, Wymann M P, MacDonald J F, Wang Y T (2003). Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron, 38(4): 611–624

    Article  CAS  PubMed  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies S W, Bates G P (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3): 493–506

    Article  CAS  PubMed  Google Scholar 

  • Marklund N, Bakshi A, Castelbuono D J, Conte V, McIntosh T K (2006). Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr Pharm Des, 12(13): 1645–1680

    Article  CAS  PubMed  Google Scholar 

  • Martel M A, Ryan T J, Bell K F, Fowler J H, McMahon A, Al-Mubarak B, Komiyama N H, Horsburgh K, Kind P C, Grant S G, Wyllie D J, Hardingham G E (2012). The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron, 74(3): 543–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martel M A, Wyllie D J A, Hardingham G E (2009). In developing hippocampal neurons, NR2B-containing N-methyl-D-aspartate receptors (NMDARs) can mediate signaling to neuronal survival and synaptic potentiation, as well as neuronal death. Neuroscience, 158(1): 334–343

    Article  CAS  PubMed  Google Scholar 

  • Martin H G S, Wang Y T (2010). Blocking the deadly effects of the NMDA receptor in stroke. Cell, 140(2): 174–176

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Obrenovitch T P, Parkinson N A, Symon L (1990). Cortical activity, ionic homeostasis, and acidosis during rat brain repetitive ischemia. Stroke, 21(8): 1192–1198

    Article  CAS  PubMed  Google Scholar 

  • Mattison H A, Hayashi T, Barria A (2012). Palmitoylation at two cysteine clusters on the C-terminus of GluN2A and GluN2B differentially control synaptic targeting of NMDA receptors. PLoS One, 7 (11): e49089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer M L, Westbrook G L, Guthrie P B (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 309(5965): 261–263

    Article  CAS  PubMed  Google Scholar 

  • McGeer E G, McGeer P L (1976). Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature, 263(5577): 517–519

    Article  CAS  PubMed  Google Scholar 

  • Miller B R, Dorner J L, Shou M, Sari Y, Barton S J, Sengelaub D R, Kennedy R T, Rebec G V (2008). Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience, 153(1): 329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milnerwood A J, Cummings DM, Dallérac GM, Brown J Y, Vatsavayai S C, Hirst M C, Rezaie P, Murphy K P (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet, 15(10): 1690–1703

    Article  CAS  PubMed  Google Scholar 

  • Milnerwood A J, Gladding C M, Pouladi M A, Kaufman A M, Hines R M, Boyd J D, Ko R W, Vasuta O C, Graham R K, Hayden M R, Murphy T H, Raymond L A (2010). Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron, 65(2): 178–190

    Article  CAS  PubMed  Google Scholar 

  • Milnerwood A J, Kaufman A M, Sepers M D, Gladding C M, Zhang L, Wang L, Fan J, Coquinco A, Qiao J Y, Lee H, Wang Y T, Cynader M, Raymond L A (2012). Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice. Neurobiol Dis, 48(1): 40–51

    Article  CAS  PubMed  Google Scholar 

  • Milnerwood A J, Raymond L A (2007). Corticostriatal synaptic function in mouse models of Huntington’s disease: early effects of huntingtin repeat length and protein load. J Physiol, 585 (Pt 3): 817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minnerup J, Sutherland B A, Buchan A M, Kleinschnitz C (2012). Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci, 13(9): 11753–11772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg P H (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science, 256(5060): 1217–1221

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Mishina M (1996). Molecular diversity and physiological roles of the NMDA-receptor channel. Nihon Yakurigaku Zasshi, 108(1): 1–12

    Article  CAS  PubMed  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354(6348): 31–37

    Article  CAS  PubMed  Google Scholar 

  • Murphy K P, Carter R J, Lione L A, Mangiarini L, Mahal A, Bates G P, Dunnett S B, Morton A J (2000). Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. J Neurosci, 20(13): 5115–5123

    CAS  PubMed  Google Scholar 

  • O’Donnell L A, Agrawal A, Jordan-Sciutto K L, Dichter M A, Lynch D R, Kolson D L (2006). Human immunodeficiency virus (HIV)- induced neurotoxicity: roles for the NMDA receptor subtypes. J Neurosci, 26(3): 981–990

    Article  PubMed  CAS  Google Scholar 

  • Obrenovitch T P, Urenjak J (1997). Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma, 14(10): 677–698

  • Okamoto S, Pouladi M A, Talantova M, Yao D, Xia P, Ehrnhoefer D E, Zaidi R, Clemente A, Kaul M, Graham R K, Zhang D, Vincent Chen H S, Tong G, Hayden M R, Lipton S A (2009). Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med, 15(12): 1407–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olney JW, Sharpe L G (1969). Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science, 166(3903): 386–388

    Article  CAS  PubMed  Google Scholar 

  • Papadia S, Stevenson P, Hardingham N R, Bading H, Hardingham G E (2005). Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J Neurosci, 25(17): 4279–4287

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet J P, Oliet S H (2012). Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell, 150(3): 633–646

    Article  CAS  PubMed  Google Scholar 

  • Parsons M P, Raymond L A (2014). Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron, 82(2): 279–293

    Article  CAS  PubMed  Google Scholar 

  • Parsons MP, Vanni MP, Woodard C L, Kang R, Murphy T H, Raymond L A (2016). Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nat Commun, 7: 11251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrick G N, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai L H (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762): 615–622

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Nairn A C, Wang P, Lombroso P J (2003). NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat Neurosci, 6(1): 34–42

    Article  CAS  PubMed  Google Scholar 

  • Petralia R S, Wang Y X, Hua F, Yi Z, Zhou A, Ge L, Stephenson F A, Wenthold R J (2010). Organization of NMDA receptors at extrasynaptic locations. Neuroscience, 167(1): 68–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pop C, Salvesen G S (2009). Human caspases: activation, specificity, and regulation. J Biol Chem, 284(33): 21777–21781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouladi MA, Graham R K, Karasinska JM, Xie Y, Santos R D, Petersén A, Hayden M R (2009). Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain, 132 (Pt 4): 919–932

    Article  PubMed  Google Scholar 

  • Prybylowski K, Chang K, Sans N, Kan L, Vicini S, Wenthold R J (2005). The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron, 47(6): 845–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rami A, Krieglstein J (1993). Protective effects of calpain inhibitors against neuronal damage caused by cytotoxic hypoxia in vitro and ischemia in vivo. Brain Res, 609 (1-2): 67–70

    Article  CAS  PubMed  Google Scholar 

  • Rosas H D, Koroshetz W J, Chen Y I, Skeuse C, Vangel M, Cudkowicz M E, Caplan K, Marek K, Seidman L J, Makris N, Jenkins B G, Goldstein J M (2003). Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology, 60(10): 1615–1620

    Article  CAS  PubMed  Google Scholar 

  • Rosenmund C, Clements J D, Westbrook G L (1993). Nonuniform probability of glutamate release at a hippocampal synapse. Science, 262(5134): 754–757

    Article  CAS  PubMed  Google Scholar 

  • Saavedra A, Giralt A, Rué L, Xifró X, Xu J, Ortega Z, Lucas J J, Lombroso P J, Alberch J, Pérez-Navarro E (2011). Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington’s disease: a STEP in the resistance to excitotoxicity. J Neurosci, 31(22): 8150–8162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanberg P R, Calderon S F, Giordano M, Tew J M, Norman A B (1989). The quinolinic acid model of Huntington’s disease: locomotor abnormalities. Exp Neurol, 105(1): 45–53

    Article  CAS  PubMed  Google Scholar 

  • Sanberg P R, Lehmann J, Fibiger H C (1978). Impaired learning and memory after kainic acid lesions of the striatum: a behavioral model of Huntington’s disease. Brain Res, 149(2): 549–551

    Article  Google Scholar 

  • Sánchez I, Xu C J, Juo P, Kakizaka A, Blenis J, Yuan J (1999). Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron, 22(3): 623–633

    Article  PubMed  Google Scholar 

  • Sanders S, Hayden M (2015). Aberrant palmitoylation in Huntington disease. BiochmSoc Trans, 43(2): 205–210

    Article  CAS  Google Scholar 

  • Sanz-Clemente A, Nicoll R A, Roche K W (2013). Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist, 19(1): 62–75

    Article  CAS  PubMed  Google Scholar 

  • Sattler R, Tymianski M (2000). Molecular mechanisms of calciumdependent excitotoxicity. J Mol Med (Berl), 78(1): 3–13

    Article  CAS  Google Scholar 

  • Sattler R, Xiong Z, Lu W Y, Hafner M, MacDonald J F, Tymianski M (1999). Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science, 284(5421): 1845–1848

    Article  CAS  PubMed  Google Scholar 

  • Sawa A, Wiegand G W, Cooper J, Margolis R L, Sharp A H, Lawler J F, Greenamyre J T, Snyder S H, Ross C A (1999). Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med, 5(10): 1194–1198

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz R, Bennett J P, Coyle J T Jr (1977). Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesions: correlations with Huntington’s Disease. J Neurochem, 28(4): 867–869

    Article  CAS  PubMed  Google Scholar 

  • Shehadeh J, Fernandes H B, Zeron Mullins MM, Graham R K, Leavitt B R, Hayden M R, Raymond L A (2006). Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiol Dis, 21(2): 392–403

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Cummings J, Roldan L A, Jan Y N, Jan L Y (1994). Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature, 368(6467): 144–147

    Article  CAS  PubMed  Google Scholar 

  • Shirasaki D I, Greiner E R, Al-Ramahi I, Gray M, Boontheung P, Geschwind D H, Botas J, Coppola G, Horvath S, Loo J A, Yang XW (2012). Network organization of the huntingtin proteomic interactome in mammalian brain. Neuron, 75(1): 41–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siman R, Noszek J C (1988). Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron, 1(4): 279–287

    Article  CAS  PubMed  Google Scholar 

  • Singaraja R R, Hadano S, Metzler M, Givan S, Wellington C L, Warby S, Yanai A, Gutekunst C A, Leavitt B R, Yi H, Fichter K, Gan L, McCutcheon K, Chopra V, Michel J, Hersch S M, Ikeda J E, Hayden MR (2002). HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet, 11(23): 2815–2828

    Article  CAS  PubMed  Google Scholar 

  • Singaraja R R, Huang K, Sanders S S, Milnerwood A J, Hines R, Lerch J P, Franciosi S, Drisdel R C, Vaid K, Young F B, Doty C, Wan J, Bissada N, Henkelman R M, Green W N, Davis N G, Raymond L A, Hayden M R (2011). Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Hum Mol Genet, 20(20): 3899–3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spargo E, Everall I P, Lantos P L (1993). Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry, 56(5): 487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby O, Jensen V, Paulsen O, Andersen P, Kim J J, Thompson R F, Sun W, Webster L C, Grant S G, Eilers J, Konnerth A, Li J, McNamara J O, Seeburg P H (1998). Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell, 92(2): 279–289

    Article  CAS  PubMed  Google Scholar 

  • Strand A D, Baquet Z C, Aragaki A K, Holmans P, Yang L, Cleren C, Beal M F, Jones L, Kooperberg C, Olson J M, Jones K R (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci, 27(43): 11758–11768

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Savanenin A, Reddy P H, Liu Y F (2001). Polyglutamineexpanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem, 276(27): 24713–24718

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Del Mar N, Meade C, Goldowitz D, Reiner A (2002). Differential changes in striatal projection neurons in R6/2 transgenic mice for Huntington’s disease. Neurobiol Dis, 11(3): 369–385

    Article  CAS  PubMed  Google Scholar 

  • Sutton L M, Sanders S S, Butland S L, Singaraja R R, Franciosi S, Southwell A L, Doty C N, SchmidtME, Mui K K, Kovalik V, Young F B, Zhang W, Hayden M R (2013). Hip14l-deficient mice develop neuropathological and behavioural features of Huntington disease. Hum Mol Genet, 22(3): 452–465

    Article  CAS  PubMed  Google Scholar 

  • Tabrizi S J, Workman J, Hart P E, Mangiarini L, Mahal A, Bates G, Cooper J M, Schapira A H (2000). Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol, 47(1): 80–86

    Article  CAS  PubMed  Google Scholar 

  • Tallaksen-Greene S J, Janiszewska A, Benton K, Ruprecht L, Albin R L (2010). Lack of efficacy of NMDA receptor-NR2B selective antagonists in the R6/2 model of Huntington disease. Exp Neurol, 225(2): 402–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang T S, Slow E, Lupu V, Stavrovskaya I G, Sugimori M, Llinás R, Kristal B S, Hayden M R, Bezprozvanny I (2005). Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci U S A, 102(7): 2602–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terasaki Y, Sasaki T, Yagita Y, Okazaki S, Sugiyama Y, Oyama N, Omura-Matsuoka E, Sakoda S, Kitagawa K (2010). Activation of NR2A receptors induces ischemic tolerance through CREB signaling. J Cereb Blood Flow Metab, 30(8): 1441–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6): 971–983

    Article  Google Scholar 

  • Thomas C G, Miller A J, Westbrook G L (2006). Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol, 95(3): 1727–1734

    Article  CAS  PubMed  Google Scholar 

  • Tobin A J (2004). G. Bates, P. Harper, L. Jones (eds). Huntington’S disease, Third edition. Human Genet, 114(3): 320–321

  • Tovar K R, McGinley M J, Westbrook G L (2013). Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci, 33(21): 9150–9160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tovar K R, Westbrook G L (1999). The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci, 19(10): 4180–4188

    CAS  PubMed  Google Scholar 

  • Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian M M, Balel C, Wang M, Jia N, Zhang W, Lew F, Chan S L, Chen Y, Lu Y (2010). DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell, 140(2): 222–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tymianski M (2004). Stroke in 2013: Disappointments and advances in acute stroke intervention. Nat Rev Neurol, 10(2): 66–68

    Article  Google Scholar 

  • Uribe V, Wong B K, Graham R K, Cusack C L, Skotte N H, Pouladi M A, Xie Y, Feinberg K, Ou Y, Ouyang Y, Deng Y, Franciosi S, Bissada N, Spreeuw A, Zhang W, Ehrnhoefer D E, Vaid K, Miller F D, Deshmukh M, Howland D, Hayden M R (2012). Rescue from excitotoxicity and axonal degeneration accompanied by agedependent behavioral and neuroanatomical alterations in caspase-6- deficient mice. Hum Mol Genet, 21(9): 1954–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usdin M T, Shelbourne P F, Myers R M, Madison D V (1999). Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Hum Mol Genet, 8(5): 839–846

    Article  CAS  PubMed  Google Scholar 

  • Van Raamsdonk J M, Pearson J, Slow E J, Hossain S M, Leavitt B R, HaydenMR (2005). Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci, 25(16): 4169–4180

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel J P, Myers R H, Stevens T J, Ferrante R J, Bird E D, Richardson E P (1985). Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol, 44(6): 559–577

    Article  CAS  PubMed  Google Scholar 

  • Wang C X, Shuaib A (2005). NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. Curr Drug Targets CNS Neurol Disord, 4(2): 143–151

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Briz V, Chishti A, Bi X, Baudry M (2013). Distinct roles for mcalpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci, 33(48): 18880–18892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warby S C, Doty C N, Graham R K, Carroll J B, Yang Y Z, Singaraja R R, Overall C M, Hayden M R (2008). Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum Mol Genet, 17(15): 2390–2404

    Article  CAS  PubMed  Google Scholar 

  • Watkins J C, Evans R H (1981). Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol, 21(1): 165–204

    Article  CAS  PubMed  Google Scholar 

  • Wellington C, Ellerby LM, Gutekunst C A, Rogers D, Warby S, Graham R K, Loubser O, Van Raamsdonk J, Singaraja R, Yang Y Z, Gafni J, Bredesen D, Hersch S M, Leavitt B R, Roy S, Nicholson D W, Hayden M R (2002). Caspase cleavage of mutant Huntingtin precedes Neurodegeneration in Huntington’s disease. J Neurosci, 22(18): 7862–7872

    CAS  PubMed  Google Scholar 

  • Wellington C L, Ellerby L M, Hackam A S, Margolis R L, Trifiro M A, Singaraja R, McCutcheon K, Salvesen G S, Propp S S, Bromm M, Rowland K J, Zhang T, Rasper D, Roy S, Thornberry N, Pinsky L, Kakizuka A, Ross C A, Nicholson DW, Bredesen D E, Hayden M R (1998). Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem, 273(15): 9158–9167

    Article  CAS  PubMed  Google Scholar 

  • Wellington C L, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, Cattaneo E, Hackam A, Sharp A, Thornberry N, Nicholson D W, Bredesen D E, Hayden M R (2000). Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem, 275(26): 19831–19838

    Article  CAS  PubMed  Google Scholar 

  • Williams K (1993). Ifenprodil discriminates subtypes of the N-methyl- D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol, 44(4): 851–859

    CAS  PubMed  Google Scholar 

  • Wong B K Y, Ehrnhoefer D E, Graham R K, Martin D D, Ladha S, Uribe V, Stanek L M, Franciosi S, Qiu X, Deng Y, Kovalik V, Zhang W, PouladiMA, Shihabuddin L S, HaydenMR (2015). Partial rescue of some features of Huntington Disease in the genetic absence of caspase-6 in YAC128 mice. Neurobiol Dis, 76: 24–36

    Article  CAS  PubMed  Google Scholar 

  • Wroge C M, Hogins J, Eisenman L, Mennerick S (2012). Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci, 32(19): 6732–6742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia P, Chen H S, Zhang D, Lipton S A (2010). Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci, 30(33): 11246–11250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Kurup P, Zhang Y, Goebel-Goody S M, Wu P H, Hawasli A H, Baum M L, Bibb J A, Lombroso P J (2009). Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci, 29(29): 9330–9343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki M, Mori H, Araki K, Mori K J, Mishina M (1992). Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett, 300(1): 39–45

    Article  CAS  PubMed  Google Scholar 

  • Yan G M, Ni B, Weller M, Wood K A, Paul S M (1994). Depolarization or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons. Brain Res, 656(1): 43–51

    Article  CAS  PubMed  Google Scholar 

  • Young A B, Greenamyre J T, Hollingsworth Z, Albin R, D’ Amato C, Shoulson I, Penney J B (1988). NMDA receptor losses in putamen from patients with Huntington’s disease. Science, 241(4868): 981–983

    Article  CAS  PubMed  Google Scholar 

  • Young F B, Butland S L, Sanders S S, Sutton L M, Hayden M R (2012). Putting proteins in their place: Palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol, 97(2): 220–238

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Myers S J, Wells G, Nicholson K L, Swanger S A, Lyuboslavsky P, Tahirovic Y A, Menaldino D S, Ganesh T, Wilson L J, Liotta D C, Snyder J P, Traynelis S F (2015). Context-dependent GluN2B-selective inhibitors of NMDA receptor function are neuroprotective with minimal side effects. Neuron, 85(6): 1305–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeron M M, Hansson O, Chen N, Wellington C L, Leavitt B R, Brundin P, Hayden M R, Raymond L A (2002). Increased sensitivity to Nmethyl- D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron, 33(6): 849–860

    Article  CAS  PubMed  Google Scholar 

  • Zeron M M, Fernandes H B, Krebs C, Shehadeh J, Wellington C L, Leavitt B R, Baimbridge K G, Hayden M R, Raymond L A (2004). Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington’s disease. Mol Cell Neurosci, 25(3): 469–479

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q G, Wu D N, Han D, Zhang G Y (2007). Critical role of PTEN in the coupling between PI3K/Akt and JNK1/2 signaling in ischemic brain injury. FEBS Lett, 581(3): 495–505

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Taghibiglou C, Girling K, Dong Z, Lin S Z, Lee W, ShyuWC, Wang Y T (2013). Critical role of increased PTEN nuclear translocation in excitotoxic and ischemic neuronal injuries. J Neurosci, 33(18): 7997–8008

    Article  CAS  PubMed  Google Scholar 

  • Zhang S J, Steijaert M N, Lau D, Schtz G, Delucinge-Vivier C, Descombes P, Bading H (2007). Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron, 53(4): 549–562

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Li F, Xu H B, Luo C X, Wu H Y, Zhu MM, Lu W, Ji X, Zhou Q G, Zhu D Y (2010). Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med, 16(12): 1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Baudry M (2006). Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci, 26(11): 2956–2963

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Ding Q, Chen Z, Yun H, Wang H (2013). Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic Nmethyl- D-aspartate receptor function and neuronal excitotoxicity. J Biol Chem, 288(33): 24151–24159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccato C, Valenza M, Cattaneo E (2010). Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev, 90(3): 905–981

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Tian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girling, K.D., Wang, Y.T. Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington’s Disease. Front. Biol. 11, 439–458 (2016). https://doi.org/10.1007/s11515-016-1425-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1425-z

Keywords

Navigation