Skip to main content
Log in

Cytogenetic changes of mesenchymal stem cells in the neoplastic bone marrow niche in leukemia

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

Bone marrow mesenchymal stromal cells (BM-MSCs) are an essential cell type in the hematopoietic microenvironment. The question of whether MSCs from patients with different leukemias have cytogenetic abnormalities is controversial. In this study, we attempted to review the cytogenetic profiles of MSCs in patients with leukemia, and verify whether these profiles were related to different ex vivo culture conditions or to chronic or acute disease states. This information could be useful in clarifying the origin of MSCs and developing clinical applications for this cell type.

Methods

A systematic literature search was performed using the PubMed search engine. Studies published over the past 15 years, i.e., between 1995 and January 2015, were considered for review. The following keywords were used: “cytogenetic,” “leukemia,” “bone marrow,” and “mesenchymal stromal cells.”

Results

Some studies demonstrated that BM-MSCs are cytogenetically normal, whereas others provided evidence of aberrations in these cells

Conclusions

Studying cytogenetic changes of MSCs in a variety of leukemias will help researchers understand the nature of these tumors and ensure the safety of human stem cells in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achille V, Mantelli M, Arrigo G, Novara F, Avanzini M A, Bernardo M E, Zuffardi O, Barosi G, Zecca M, Maccario R (2011). Cell-cycle phases and genetic profile of bone marrow-derived mesenchymal stromal cells expanded in vitro from healthy donors. J Cell Biochem, 112(7): 1817–1821

    Article  CAS  PubMed  Google Scholar 

  • Arnulf B, Lecourt S, Soulier J, Ternaux B, Lacassagne M N, Crinquette A, Dessoly J, Sciaini A K, Benbunan M, Chomienne C, Fermand J P, Marolleau J P, Larghero J (2007). Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia, 21(1): 158–163

    Article  CAS  PubMed  Google Scholar 

  • Avanzini M A, Bernardo M E, Novara F, Mantelli M, Poletto V, Villani L, Lenta E, Ingo D M, Achille V, Bonetti E, Massa M, Campanelli R, Fois G, Catarsi P, Gale R P, Moretta A, Aronica A, Maccario R, Acquafredda G, Lisini D, Zecca M, Zuffardi O, Locatelli F, Barosi G, Rosti V, the AGIMM Investigators (2014). Functional and genetic aberrations of in vitro-cultured marrow-derived mesenchymal stromal cells of patients with classical Philadelphia-negative myeloproliferative neoplasms. Leukemia, 28(8): 1742–1745

    Article  CAS  Google Scholar 

  • Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N (2014). Bone marrow neoplastic niche in leukemia. Hematology, 19(4): 232–238

    Article  CAS  PubMed  Google Scholar 

  • Bacher U, Asenova S, Badbaran A, Zander A R, Alchalby H, Fehse B, Kröger N, Lange C, Ayuk F (2010). Bone marrow mesenchymal stromal cells remain of recipient origin after allogeneic SCT and do not harbor the JAK2V617F mutation in patients with myelofibrosis. Clin Exp Med, 10(3): 205–208

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan K, Burger J A, Quiroga M P, Henneberg M, Ayres M L, Wierda W G, Gandhi V (2010). Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood, 116(7): 1083–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernasconi P (2008). Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions-a review. Br J Haematol, 142(5): 695–708

    Article  CAS  PubMed  Google Scholar 

  • Bhatia R, McGlave P B, Dewald G W, Blazar B R, Verfaillie C M (1995). Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood, 85(12): 3636–3645

    CAS  PubMed  Google Scholar 

  • Blau O, Baldus C D, Hofmann W K, Thiel G, Nolte F, Burmeister T, Türkmen S, Benlasfer O, Schümann E, Sindram A, Molkentin M, Mundlos S, Keilholz U, Thiel E, Blau I W (2011). Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood, 118(20): 5583–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blau O, Hofmann W K, Baldus C D, Thiel G, Serbent V, Schümann E, Thiel E, Blau I W (2007). Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol, 35(2): 221–229

    Article  CAS  PubMed  Google Scholar 

  • Borovski T, De Sousa E Melo F, Vermeulen L, Medema J P (2011). Cancer stem cell niche: the place to be. Cancer Res, 71(3): 634–639

    Article  CAS  PubMed  Google Scholar 

  • Campioni D, Bardi M A, Cavazzini F, Tammiso E, Pezzolo E, Pregnolato E, Volta E, Cuneo A, Lanza F (2012). Cytogenetic and molecular cytogenetic profile of bone marrow-derived mesenchymal stromal cells in chronic and acute lymphoproliferative disorders. Ann Hematol, 91(10): 1563–1577

    Article  PubMed  Google Scholar 

  • Carrara R C, Orellana M D, Fontes A M, Palma P V, Kashima S, Mendes M R, Coutinho M A, Voltarelli J C, Covas D T (2007). Mesenchymal stem cells from patients with chronic myeloid leukemia do not express BCR-ABL and have absence of chimerism after allogeneic bone marrow transplant. Braz J Med Biol Res, 40(1): 57–67

    Article  CAS  PubMed  Google Scholar 

  • Choumerianou D M, Dimitriou H, Perdikogianni C, Martimianaki G, Riminucci M, Kalmanti M (2008). Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif, 41(6): 909–922

    Article  CAS  PubMed  Google Scholar 

  • Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, Danho C, Laharrague P, Klein B, Rème T, Bourin P (2007). Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia, 21(5): 1079–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitriou H, Linardakis E, Martimianaki G, Stiakaki E, Perdikogianni C H, Charbord P, Kalmanti M (2008). Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases. Cytotherapy, 10(2): 125–133

    Article  CAS  PubMed  Google Scholar 

  • Ferretti E, Bertolotto M, Deaglio S, Tripodo C, Ribatti D, Audrito V, Blengio F, Matis S, Zupo S, Rossi D, Ottonello L, Gaidano G, Malavasi F, Pistoia V, Corcione A (2011). A novel role of the CX3CR1/CX3CL1 system in the cross-talk between chronic lymphocytic leukemia cells and tumor microenvironment. Leukemia, 25(8): 1268–1277

    Article  CAS  PubMed  Google Scholar 

  • Flores-Figueroa E, Arana-Trejo R M, Gutiérrez-Espíndola G, Pérez-Cabrera A, Mayani H (2005). Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res, 29(2): 215–224

    Article  CAS  PubMed  Google Scholar 

  • Garayoa M, Garcia J L, Santamaría C, Garcia-Gomez A, Blanco J F, Pandiella A, Hernández J M, Sanchez-Guijo F M, del Cañizo M C, Gutiérrez N C, San Miguel J F (2009). Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia, 23(8): 1515–1527

    Article  CAS  PubMed  Google Scholar 

  • Garderet L, Mazurier C, Chapel A, Ernou I, Boutin L, Holy X, Gorin N C, Lopez M, Doucet C, Lataillade J J (2007). Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma, 48(10): 2032–2041

    Article  CAS  PubMed  Google Scholar 

  • Haniffa M A, Wang X N, Holtick U, Rae M, Isaacs J D, Dickinson A M, Hilkens C M, Collin M P (2007). Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol, 179(3): 1595–1604

    Article  CAS  PubMed  Google Scholar 

  • Huang J C, Basu S K, Zhao X, Chien S, Fang M, Oehler V G, Appelbaum F R, Becker P S (2015). Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J, 5(4): e302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James C (2008). The JAK2V617F mutation in polycythemia vera and other myeloproliferative disorders: one mutation for three diseases? ASH Education Program Book, 2008(1): 69–75

    Google Scholar 

  • Jootar S, Pornprasertsud N, Petvises S, Rerkamnuaychoke B, Disthabanchong S, Pakakasama S, Ungkanont A, Hongeng S (2006). Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion. Leuk Res, 30(12): 1493–1498

    Article  CAS  PubMed  Google Scholar 

  • Kastrinaki M C, Pontikoglou C, Klaus M, Stavroulaki E, Pavlaki K, Papadaki H A (2011). Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes. Curr Stem Cell Res Ther, 6(2): 122–130

    Article  CAS  PubMed  Google Scholar 

  • Keating A (2006). Mesenchymal stromal cells. Curr Opin Hematol, 13 (6): 419–425

    Article  PubMed  Google Scholar 

  • Kemp K, Morse R, Sanders K, Hows J, Donaldson C (2011). Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells. Ann Hematol, 90(7): 777–789

    Article  CAS  PubMed  Google Scholar 

  • Klaus M, Stavroulaki E, Kastrinaki M C, Fragioudaki P, Giannikou K, Psyllaki M, Pontikoglou C, Tsoukatou D, Mamalaki C, Papadaki H A (2010). Reserves, functional, immunoregulatory, and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes. Stem Cells Dev, 19(7): 1043–1054

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Villar O, Garcia J L, Sanchez-Guijo F M, Robledo C, Villarón E M, Hernández-Campo P, Lopez-Holgado N, Diez-Campelo M, Barbado M V, Perez-Simon J A, Hernández-Rivas JM, San-Miguel J F, del Cañizo M C (2009). Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia, 23(4): 664–672

    Article  CAS  Google Scholar 

  • Mahtouk K, Hose D, Rème T, De Vos J, Jourdan M, Moreaux J, Fiol G, Raab M, Jourdan E, Grau V, Moos M, Goldschmidt H, Baudard M, Rossi J F, Cremer F W, Klein B (2005). Expression of EGF-family receptors and amphiregulin in multiple myeloma. Amphiregulin is a growth factor for myeloma cells. Oncogene, 24(21): 3512–3524

    CAS  Google Scholar 

  • Menendez P, Catalina P, Rodríguez R, Melen G J, Bueno C, Arriero M, García-Sánchez F, Lassaletta A, García-Sanz R, García-Castro J (2009). Bone marrow mesenchymal stem cells from infants with MLL-AF4 + acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med, 206(13): 3131–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier F, Monczak Y, François M, Prchal J, Galipeau J (2009). Bone marrow mesenchymal stromal cells of patients with myeloproliferative disorders do not carry the JAK2-V617F mutation. Exp Hematol, 37(3): 416–420

    Article  CAS  PubMed  Google Scholar 

  • Mitsiades C S, McMillin D W, Klippel S, Hideshima T, Chauhan D, Richardson P G, Munshi N C, Anderson K C (2007). The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am, 21(6). 1007–1034, vii–viii

    Article  Google Scholar 

  • Nussenzveig R H, Swierczek S I, Jelinek J, Gaikwad A, Liu E, Verstovsek S, Prchal J T (2007). Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol, 35(1): 32. e31–32, e39

    Google Scholar 

  • Oliveira F M, Lucena-Araujo A R, Favarin M C, Palma P V, Rego E M, Falcão R P, Covas D T, Fontes A M (2013). Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH. Exp Hematol, 41(2): 198–208

    Article  PubMed  Google Scholar 

  • Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, Kido S, Inoue D, Matsumoto T (2005). Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood, 106(9): 3160–3165

    Article  CAS  PubMed  Google Scholar 

  • Pieri L, Guglielmelli P, Bogani C, Bosi A, Vannucchi A M, Consortium M D R, and the Myeloproliferative Disorders Research Consortium (MPD-RC) (2008). Mesenchymal stem cells from JAK2(V617F) mutant patients with primary myelofibrosis do not harbor JAK2 mutant allele. Leuk Res, 32(3): 516–517

    Article  CAS  PubMed  Google Scholar 

  • Pimenova M A, Parovichnikova E N, Kokhno A V, Domracheva E V, Manakova T E, Mal’tseva Iu S, Konnova M L, Shishigina L A, Savchenko V G (2013). Cytogenetic characteristics of hematopoietic and stromal progenitor cells in myelodysplastic syndrome. Ter Arkh, 85(7): 34–42

    CAS  PubMed  Google Scholar 

  • Podar K, Richardson P G, Hideshima T, Chauhan D, Anderson K C (2007). The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol, 20(4): 597–612

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy R, Lam E W, Soeiro I, Tisato V, Bonnet D, Dazzi F (2007). Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia, 21(2): 304–310

    Article  CAS  PubMed  Google Scholar 

  • Saki N, Abroun S, Farshdousti Hagh M, Asgharei F (2011). Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J, 13(3): 131–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahrabi S, Azizidoost S, Shahjahani M, Rahim F, Ahmadzadeh A, Saki N (2014). New insights in cellular and molecular aspects of BM niche in chronic myelogenous leukemia. Tumour Biol, 35(11): 10627–10633

    Article  CAS  PubMed  Google Scholar 

  • Soenen-Cornu V, Tourino C, Bonnet M L, Guillier M, Flamant S, Kotb R, Bernheim A, Bourhis J H, Preudhomme C, Fenaux P, Turhan A G (2005). Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene, 24 (15): 2441–2448

    Article  CAS  PubMed  Google Scholar 

  • Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy J D Jr (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med, 349(26): 2483–2494

    Article  CAS  PubMed  Google Scholar 

  • Wallace S R, Oken M M, Lunetta K L, Panoskaltsis-Mortari A, Masellis A M (2001). Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer, 91(7): 1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Wöhrer S, Rabitsch W, Shehata M, Kondo R, Esterbauer H, Streubel B, Sillaber C, Raderer M, Jaeger U, Zielinski C, Valent P (2007). Mesenchymal stem cells in patients with chronic myelogenous leukaemia or bi-phenotypic Ph + acute leukaemia are not related to the leukaemic clone. Anticancer Res, 27(6B): 3837–3841

    PubMed  Google Scholar 

  • Yeh S P, Lo W J, Lin C L, Liao Y M, Lin C Y, Bai L Y, Liang J A, Chiu C F (2012). Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells. Ann Hematol, 91(2): 163–172

    Article  PubMed  Google Scholar 

  • Zdzisińska B, Bojarska-Junak A, Dmoszyńska A, Kandefer-Szerszen M (2008). Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells. Arch Immunol Ther Exp (Warsz), 56(3): 207–221

    Article  Google Scholar 

  • Zhan F, Huang Y, Colla S, Stewart J P, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B, Anaissie E, Hollmig K, Pineda-Roman M, Tricot G, van Rhee F, Walker R, Zangari M, Crowley J, Barlogie B, Shaughnessy J D Jr (2006). The molecular classification of multiple myeloma. Blood, 108(6): 2020–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmaldin Saki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferdowsi, S., Azizidoost, S., Ghafari, N. et al. Cytogenetic changes of mesenchymal stem cells in the neoplastic bone marrow niche in leukemia. Front. Biol. 11, 305–310 (2016). https://doi.org/10.1007/s11515-016-1408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1408-0

Keywords

Navigation