Skip to main content
Log in

Fern spore germination in response to environmental factors

  • Review
  • Published:
Frontiers in Biology

Abstract

Fern spore germination gives rise to the rhizoid and protonemal cell through asymmetric cell division, and then develops into a gametophyte. Spore germination is also a representative single-cell model for the investigation of nuclear polar movement, asymmetrical cell division, polarity establishment and rhizoid tip-growth. These processes are affected by various environmental factors, such as light, gravity, phytohormones, metal ions, and temperature. Here, we present a catalog of spore germination in response to different environmental factors. They are as follows: (1) Representative modes of light affecting spore germination from different fern species include red light-stimulated and far red light-inhibited spore germination, far red light-uninhibited spore germination, blue light-inhibited spore germination, and spore germination in the dark. The optimal light intensity and illumination time for spore germination are different among various fern species. Light response upon spore germination is initiated from the cell mitosis that regulated by phytochromes (PHYs) and cryptochromes (CRYs). AcPHY2, AcCRY3 and/or AcCRY4 are hypothesized to be involved in spore germination; (2) Gravity and calcium are crucial to early nuclear movement and polarity establishment of spores; (3) Gibberellin and antheridiogen can initiate and promote spore germination in many species, but abscisic acid, jasmonic acid, and ethylene pose only minor effects; (4) Spores can obtain the maximal germination rate in their favorable growth medium. Moreover, metal ions, pH, and spore density in the culture medium also affect spore germination; (5) Most fern spores germinate at 25°C, and an optimal CO2 concentration is necessary for spore germination of certain fern plants. These provide valuable information for understanding fern spore germination in response to environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashcroft C J, Sheffield E (2000). The effect of spore density on germination and development in Pteridium, monitored using a novel culture technique. Am Fern J, 90(3): 91–99

    Article  Google Scholar 

  • Bannon ME, Kordan H A, Sheffield E (1991). Effects of oxybarbiturates on fern spore germination and gametophyte development. Atla- Altern Lab Anim, 19(3): 308–315

    Google Scholar 

  • Bao M, Wu X M, Ding L (2000). Effect of sucrose and the growth of auxiliary substances on spore artificial propagation of Pteridium aquilinum. J Qinghai Norm Univ, 3: 39–43 (Nat Sci Ed)

    Google Scholar 

  • Baskaran X, Jeyachandran R (2012). In vitro spore germination and gametophyte growth assessment of a critically endangered fern: Pteris tripartita Sw. Pteridol Res, 1(1): 4–9

    Google Scholar 

  • Brum F R, Randi A M (2002). High irradiance and temperature inhibit the germination of spores of the fern Rumohra adiantiformis (Forst.) Ching (Dryopteridaceae). Braz J Bot, 25(4): 391–396

    Article  Google Scholar 

  • Camloh M (1993). Spore germination and early gametophyte development of Platycerium bifurcatum. Am Fern J, 83(3): 79–85

    Article  Google Scholar 

  • Camloh M, Ravnikar M, Zel J (1996). Jasmonic acid promotes division of fern protoplasts, elongation of rhizoids and early development of gametophytes. Physiol Plant, 97(4): 659–664

    Article  CAS  Google Scholar 

  • Chang H C, Agrawal D C, Kuo C L, Wen J L, Chen C C, Tsay H S (2007). In vitro culture of Drynaria fortunei, a fern species source of Chinese medicine “Gu-Sui-Bu”. In Vitro Cell Dev-Pl, 43(2): 133–139

    Article  Google Scholar 

  • Chatterjee A, Porterfield D M, Smith P S, Roux S J (2000). Gravitydirected calcium current in germinating spores of Ceratopteris richardii. Planta, 210(4): 607–610

    Article  CAS  PubMed  Google Scholar 

  • Chiou W L, Farrar D R (1997). Antheridiogen production and response in Polypodiaceae species. Am J Bot, 84(5): 633–640

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Bhatia P, Ashwath N (2003). In vitro spore germination of the fern Schizaea dichotoma. Sci Hortic (Amsterdam), 97(3–4): 369–378

    Article  Google Scholar 

  • Dai S J, Gao J, Mu H F, Song Y Y (2008). Comparison of germination between fern spores and spermatophyte pollen. Chin Bull Bot, 25(2): 139–148

    CAS  Google Scholar 

  • Dai S J, Li L, Chen T T, Chong K, Xue Y B, Wang T (2006). Proteomic analysis of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics, 6 (8): 2504–2529

    Article  CAS  PubMed  Google Scholar 

  • Douglas G E (1994). An investigation into the growth, development and ultrastructure of fern gametophytes in existing and novel culture systems. PhD Thesis, University of Manchester, UK

    Google Scholar 

  • Du H H, Li Y, Li D, Dai S J, Jiang C D, Shi L (2009a). Effects of light, temperature and pH on spore germination and early gametophytic development of Alsophila metteniana. Biodiv Sci, 17(2): 182–187

    Article  Google Scholar 

  • Du J Z, Li L H, Li Y Q, Yin X H, Huang R S, Chen R (2009b). Effects of different factors on the germination and growth of Pyrrosia lingua spores. Guangxi Agric Sci, 40: 120–123

    Google Scholar 

  • Edwards E S, Roux S J (1998). Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores. Planta, 205(4): 553–560

    Article  CAS  PubMed  Google Scholar 

  • Franklin K A (2009). Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol, 12(1): 63–68

    Article  CAS  PubMed  Google Scholar 

  • Furuya M, Kanno M, Okamoto H, Fukuda S,WadaM(1997). Control of mitosis by phytochrome and a blue-light receptor in fern spores. Plant Physiol, 113(3): 677–683

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guiragossian H A, Koning R E (1986). Induction of spore germination in Schizaea pusilla (Schizaeaceae). Am J Bot, 73(11): 1588–1594

    Article  Google Scholar 

  • Guo L L, Chen W B, Jiang N, Li X G, Dai X L (2010). The effect of culture density on spore germination and sex differentiation of Ceratopteris thalictroides (L.) Brongn. J Shanghai Norm Univ, 39(2): 210–212(Nat Sci)

    Google Scholar 

  • Guo Q X, Shen Y X, Song X H, Zhao H T (2007). The effects of spores germination and planting rate of Athyrium multidentatum. Chin Agric Sci Bull, 23: 343–345

    Google Scholar 

  • Gupta M, Devi S, Singh J (1992). Effects of long-term low-dose exposure to cadmium during the entire life cycle of Ceratopteris thalictroides, a water fern. Arch Environ Contam Toxicol, 23(2): 184–189

    Article  CAS  Google Scholar 

  • Hayami J, Kadota A, Wada M (1992). Intracellular dichroic orientation of the blue light-absorbing pigment and the blue-absorption band of the red-absorbing form of phytochrome responsible for phototropism of the fern Adiantum protonemata. Photochem Photobiol, 56(5): 661–666

    Article  CAS  Google Scholar 

  • Heschel M S, Selby J, Butler C, Whitelam G C, Sharrock R A, Donohue K (2007). A new role for phytochromes in temperature-dependent germination. New Phytol, 174(4): 735–741

    Article  CAS  PubMed  Google Scholar 

  • Hiendlmeyer R, Randi A M (2007). Response of spores and young gametophytes of Cyathea delgadii Sternb. (Cyatheaceae) and Blechnum brasiliense Desv. (Blechnaceae) to different light levels. cta Bot Bras, 21(4): 909–915

    Article  Google Scholar 

  • Huckaby C S, Raghavan V (1981). Photocontrol of spore germination in the fern Thelypteris kunthii. Physiol Plant, 51(1): 19–22

    Article  Google Scholar 

  • Imaizumi T, Kanegae T, Wada M (2000). Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell, 12(1): 81–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang S J, Zeng X, Wang S P, Zhuang N S (2002). Study of tissue culture of Sphaeropteris hainanensis. Trop Agric Sci, 22: 9–12

    Google Scholar 

  • Juárez-Orozco S, Orozco-Segovia A, Mendoza-Ruiz A, Pérez-García B (2013). Spore germination of eight homosporous ferns in a temperature gradient. S Afr J Bot, 87: 112–117

    Article  Google Scholar 

  • Kagawa T, Sugai M (1991). Involvement of gibberellic acid in phytochrome-mediated spore germination of the fern Lygodium japonicum. J Plant Physiol, 138(3): 299–303

    Article  CAS  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010). Chapter twolight-regulated plant growth and development. Curr Top Dev Biol, 91: 29–66

    Article  CAS  PubMed  Google Scholar 

  • Kanegae T, Wada M (1998). Isolation and characterization of homologues of plant blue-light photoreceptor (cryptochrome) genes from the fern Adiantum capillus-veneris. Mol Gen Genet, 259(4): 345–353

    Article  CAS  PubMed  Google Scholar 

  • Li J L, Yuan Y B, Cao Z X (1995). View of the cytology and biochemistry of sexual reproduction of algae and pteridophyta. Chin Bull Bot, 12(2): 1–8

    Google Scholar 

  • Li M L, Han Y F (2000). Effect of ethylene on the growth and development of plants and inhibition of its biosynthesis by antisense RNA. Scient Silv Sin, 36(4): 77–84

    CAS  Google Scholar 

  • Merkys A J, Laurinavichius R S, Rupainene O Y, Shvegzhdene D V, Yaroshius A V (1981). Gravity as an obligatory factor in normal higher plant growth and development. Adv Space Res, 1(14): 109–116

    Article  CAS  PubMed  Google Scholar 

  • Nester J E, Coolbaugh R C (1986). Factors influencing spore germination and early gametophyte development in Anemia mexicana and Anemia phyllitidis. Plant Physiol, 82(1): 230–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niu J Y, Li S, Xu Z M, Qin S H, Lian R F (2002). Effect of illumination and exogenous substance on spore germination and seedling survival of Pteridium aquilinum. Acta Hortic Sin, 29(6): 584–586

    Google Scholar 

  • Nondorf S L, Dooley M A, Palmieri M, Swatzell L J (2003). The effects of pH, temperature, light intensity, light quality, and moisture levels on spore germination in Cheilanthes feei of southeast Missouri. Am Fern J, 93(2): 56–69

    Article  Google Scholar 

  • Nozue K, Fukuda S, Kanegae T, Wada M (1998a). Isolation of a second phytochrome cDNA from Adiantum capillus-veneris. Plant Physiol, 118: 712

    Google Scholar 

  • Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh K C, Lagarias J C, Wada M (1998b). A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci USA, 95(26): 15826–15830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nozue K, Kanegae T, Wada M (1997). A full length Ty3/gypsy-type retrotransposon in the fern Adiantum. J Plant Res, 110(4): 495–499

    Article  CAS  Google Scholar 

  • Ong B L, Koh C K K, Wee Y C (1998). Effects of CO2 on growth and photosynthesis of Pyrrosia piloselloides (L.) Price gametophytes. Photosynthetica, 35(1): 21–27

    Article  Google Scholar 

  • Ouyang C J, Tang Y J, Wang R J (2008). Spore culture and gametophyte development of Dryopteris varia (L.) Ktunze. J Trop Subtrop Bot, 16 (4): 344–349

    Google Scholar 

  • Pangua E, Lindsay S, Dyer A (1994). Spore germination and gametophyte development in three species of Asplenium. Ann Bot (Lond), 73(6): 587–593

    Article  Google Scholar 

  • Parajuli J, Joshi S D, Nepal W W F (2013). In vitro morphogenesis of colysis latiloba (Ching.). Ching. Magnesium Res, 4: 1–6

    Google Scholar 

  • Pérez-García B, Mendoza-Ruiz A, Sánchez-Coronado M E, Orozco- Segovia A (2007). Effect of light and temperature on germination of spores of four tropical fern species. Acta Oecol, 32(2): 172–179

    Article  Google Scholar 

  • Pérez-García B, Orozco-Segovia A, Riba R (1994). The effects of white fluorescent light, far-red light, darkness, and moisture on spore germination of Lygodium heterodoxum (Schizaeaceae). Am J Bot, 81 (11): 1367–1369

    Article  Google Scholar 

  • Quintanilla L G, Pajaron S, Pangua E, Amigo J (2000). Effect of temperature on germination in northernmost populations of Culcita macrocarpa and Woodwardia radicans. Plant Biol, 2(6): 612–617

    Article  Google Scholar 

  • Raghavan V (1992). Germination of fern spores. Am Sci, 80: 176–185

    CAS  PubMed  Google Scholar 

  • Ranal M A (1999). Effects of temperature on spore germination in some fern species from semideciduous mesophytic forest. Am Fern J, 89 (2): 149–158

    Article  Google Scholar 

  • Rechenmacher C, Schmitt J L, Droste A (2010). Spore germination and gametophyte development of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) under different pH conditions. Braz J Biol, 70 (4): 1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Ren B R, Xia B, Li W L, Wu J L, Zhao Y Y (2008). Investigation on spore germination of Sphenomeris chinensis (Lindsaeaceae). Acta Bot Yunnanica, 30(6): 713–717

    CAS  Google Scholar 

  • Renner G D R, Randi A M (2004). Effects of sucrose and irradiance on germination and early gametophyte growth of the endangered tree fern Dicksonia sellowiana Hook (Dicksoniaceae). Acta Bot Bras, 18 (2): 375–380

    Article  Google Scholar 

  • Reynolds T L, Raghavan V (1982). Photoinduction of spore germination in a fern, Mohria caffrorum. Ann Bot (Lond), 49: 227–233

    Google Scholar 

  • Roux S J, Chatterjee A, Hillier S, Cannon T (2003). Early development of fern gametophytes in microgravity. Adv Space Res, 31(1): 215–220

    Article  PubMed  Google Scholar 

  • Sahi A N, Singh S K (1994). Effect of sulphite on spore germination and rhizoid development in the tropical fern Lygodium japonicum (Filicales: Lygodiaceae). Rev Biol Trop, 42(1–2): 53–57

    Google Scholar 

  • Salmi M L, Haque A, Bushart T J, Stout S C, Roux S J, Porterfield D M (2011). Changes in gravity rapidly alter the magnitude and direction of a cellular calcium current. Planta, 233(5): 911–920

    Article  CAS  PubMed  Google Scholar 

  • Santos E P G D, Lehmann D R M, Santos M, Randi A M (2010). Spore germination of Gleichenella pectinata (Willd.) Ching (Polypodiopsida-Gleicheniaceae) different temperatures, levels of light and pH. Braz Arch Biol Techn, 53(6): 1309–1318

    Article  Google Scholar 

  • Scheuerlein R, Wayne R, Roux S J (1989). Calcium requirement of phytochrome-mediated fern-spore germination: No direct phytochrome- calcium interaction in the phytochrome-initiated transduction chain. Planta, 178(1): 25–30

    Article  CAS  Google Scholar 

  • Sheffield E, Douglas G E, Hearne S J, Huxham S, Wynn J M (2001). Enhancement of fern spore germination and gametophyte growth in artificial media. Am Fern J, 91(4): 179–186

    Article  Google Scholar 

  • Song Y Y, Gao J, Dai S J (2009). Sex differentiation in ferns response to environmental factors. Acta Ecol Sin, 29(9): 5030–5038

    CAS  Google Scholar 

  • Suetsugu N, Wada M (2003). Cryptogam blue-light photoreceptors. Curr Opin Plant Biol, 6(1): 91–96

    Article  CAS  PubMed  Google Scholar 

  • Tian X Y, Liu Y J, Wang S (2008). The fast establishment of micropropagation system on Adiantum raddianum using spore as explants. J Food Sci Biotech, 27(4): 103–106

    Google Scholar 

  • Tsuboi H, Nakamura S, Schäfer E, Wada M (2012). Red Light-induced phytochrome relocation into the nucleus in Adiantum capillusveneris. Mol Plant, 5(3): 611–618

    Article  PubMed  Google Scholar 

  • Viviani D, Randi A M (2008). Effects of pH, temperature and light intensity on spore germination and growth analysis of young sporophytes of Polypodium lepidopteris (Pteridophyta, Polypodiaceae). Rodriguésia, 59(4): 751–761

    Google Scholar 

  • Wang Y H, Irving H R (2011). Developing a model of plant hormone interactions. Plant Signal Behav, 6(4): 494–500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warne T R, Hickok L G (1987). (2-Chloroethyl) phosphonic acid promotes germination of immature spores of Ceratopteris richardii Brongn. Plant Physiol, 83(4): 723–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White P J, Broadley M R (2003). Calcium in plants. Ann Bot (Lond), 92 (4): 487–511

    Article  CAS  Google Scholar 

  • Whittier D P (2006). Red light inhibition of spore germination in Ophioglossum crotalophoroides. Am Fern J, 84(7): 1156–1158

    Google Scholar 

  • Whittier D P (2008). Red light inhibition of spore germination in Lycopodium clavatum. Am Fern J, 98(4): 194–198

    Article  Google Scholar 

  • Whittier D P, Braggins J E (1994). Spore germination in the Psilotaceae. Can J Bot, 72(5): 688–692

    Article  Google Scholar 

  • Whittier D P, Moyroud R (1993). The promotion of spore germination and gametophyte development in Ophioglossum palmatum by low pH. Am Fern J, 83(2): 41–46

    Article  Google Scholar 

  • Wu H, Liu X Q, Ji H, Chen L Q (2010). Effects of light, macronutrients, and sucrose on germination and development of the endangered fern Adiantum reniforme var. sinense (Adiantaceae). Sci Hortic (Amsterdam), 125(3): 417–421

    Article  CAS  Google Scholar 

  • Xu Y, Shi L, Liu Y, Li D (2005). Studies on spore propagation of Pteris cretica ‘Albo-lineata’. Acta Hortic Sin, 32(4): 658–662

    Google Scholar 

  • Xue C L, Wang W J, Gao Y H (2008). Artificial culture of spore of Microsorium pteropus. Yunnan Agric Sci Tech, 5: 16–17

    Google Scholar 

  • Yuan Y, Tian S N, Ye A H, Lu P L (2002). Studies on the rapid propagate of the Osmunda japonica Thund. Acta Hortic Sin, 29(3): 247–250

    Google Scholar 

  • Zhai G Y, Bian K, Jia K G, Zhu L X (2007). Effect of GA3 and MS medium ratio treatments on spore germination of wild Brake. China Veget, 8: 21–23

    Google Scholar 

  • Zhang J W, Niu J Y (1999). The effects of culture ground substances, GA3 and B, on spores germination and planting rate of Pteridium aquilinum. Acta Pratac Sin, 8(1): 62–68

    Google Scholar 

  • Zhang KM, Liu J H, Cheng X, Zhang G F, Fang YM, Zhang H J (2012). Effects of Ageratina adenophora on spore germination and gametophyte development of Neocheiropteris palmatopedata. Am Fern J, 102(3): 208–215

    Article  Google Scholar 

  • Zhang K M, Shi L, Jiang C D, Li Z Y (2008a). Inhibition of Ageratina adenophora on spore germination and gametophyte development of Macrothelypteris torresiana. J Integr Plant Biol, 50(5): 559–564

    Article  PubMed  Google Scholar 

  • Zhang K M, Shi L, Jiang C D, Li Z Y (2008b). Allelopathic effects of Eupatorium adenophorum on spore germination and gametophyte development in Cibotium barometz. Acta Pratac Sin, 17(2): 19–25

    Google Scholar 

  • Zhang K M, Shi L, Li D, Zhang X C (2008c). Development process and spore sterile culture of Pteris wallichiana Agardh. Acta Hortic Sin, 35(1): 94–98

    CAS  Google Scholar 

  • Zhang Y L, Li Y, Ji M C, Li D, Shi L (2007). Spore sterile culture in Alsophila podophylla Hook. Plant Physiol Comm, 43(6): 1139–1140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Shi or Shaojun Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, J., Chen, S., Zhao, Q. et al. Fern spore germination in response to environmental factors. Front. Biol. 10, 358–376 (2015). https://doi.org/10.1007/s11515-015-1342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-015-1342-6

Keywords

Navigation