Skip to main content
Log in

Gene positioning and genome function

  • Review
  • Published:
Frontiers in Biology

Abstract

The eukaryotic genome is packaged as chromatin within the three-dimensional nuclear space. Decades of cytological studies have revealed that chromosomes and genes are non-randomly localized within the nucleus and such organizations have important roles on genome function. However, several fundamental questions remain to be resolved. For example, what is required for the preferential localization of a gene to a nuclear landmark? What is the mechanism underlying gene repositioning in the nucleus? How does subnuclear gene positioning regulate gene transcription? Recent studies have revealed that several factors such as DNA sequence composition, specific regulatory sequences, epigenetic modifications, chromatin remodelers, post-transcriptional regulators and nuclear architectural proteins can influence chromatin dynamics and gene positioning in a gene-specific manner among organisms from yeast to human. In this review, we discuss some recent findings as well as experimental tools to investigate subnuclear gene positioning and to explore its implications in genome functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abruzzi K C, Belostotsky D A, Chekanova J A, Dower K, Rosbash M (2006). 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J, 25(18): 4253–4262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed S, Brickner D G, Light W H, Cajigas I, McDonough M, Froyshteter A B, Volpe T, Brickner J H (2010). DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat Cell Biol, 12(2): 111–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrulis E D, Neiman A M, Zappulla D C, Sternglanz R (1998). Perinuclear localization of chromatin facilitates transcriptional silencing. Nature, 394(6693): 592–595

    CAS  PubMed  Google Scholar 

  • Ballester M, Kress C, Hue-Beauvais C, Kiêu K, Lehmann G, Adenot P, Devinoy E (2008). The nuclear localization of WAP and CSN genes is modified by lactogenic hormones in HC11 cells. J Cell Biochem, 105(1): 262–270

    CAS  PubMed  Google Scholar 

  • Belmont A S, Li G, Sudlow G, Robinett C (1999). Visualization of largescale chromatin structure and dynamics using the lac operator/lac repressor reporter system. Methods Cell Biol, 58: 203–222

    CAS  PubMed  Google Scholar 

  • Berezney R, Dubey D D, Huberman J A (2000). Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma, 108(8): 471–484

    CAS  PubMed  Google Scholar 

  • Bian Q, Khanna N, Alvikas J, Belmont A S (2013). β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J Cell Biol, 203(5): 767–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blobel G (1985). Gene gating: a hypothesis. Proc Natl Acad Sci USA, 82(24): 8527–8529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle S, Gilchrist S, Bridger J M, Mahy N L, Ellis J A, Bickmore W A (2001). The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet, 10(3): 211–219

    CAS  PubMed  Google Scholar 

  • Branco M R, Pombo A (2006). Intermingling of chromosome territories in interphase suggests role in translocations and transcriptiondependent associations. PLoS Biol, 4(5): e138

    PubMed  PubMed Central  Google Scholar 

  • Brickner D G, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee P C, Widom J, Brickner J H (2007). H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol, 5(4): e81

    PubMed  PubMed Central  Google Scholar 

  • Brickner J H, Walter P (2004). Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol, 2(11): e342

    PubMed  PubMed Central  Google Scholar 

  • Brown C R, Kennedy C J, Delmar V A, Forbes D J, Silver P A (2008a). Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev, 22(5): 627–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown J M, Green J, das Neves R P, Wallace H A, Smith A J, Hughes J, Gray N, Taylor S, Wood W G, Higgs D R, Iborra F J, Buckle V J (2008b). Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol, 182(6): 1083–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown J M, Leach J, Reittie J E, Atzberger A, Lee-Prudhoe J, Wood W G, Higgs D R, Iborra F J, Buckle V J (2006). Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol, 172(2): 177–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown K E, Baxter J, Graf D, Merkenschlager M, Fisher A G (1999). Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell, 3(2): 207–217

    CAS  PubMed  Google Scholar 

  • Brown K E, Guest S S, Smale S T, Hahm K, Merkenschlager M, Fisher A G (1997). Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell, 91(6): 845–854

    CAS  PubMed  Google Scholar 

  • Cabal G G, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin J C, Hurt E C, Nehrbass U (2006). SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature, 441(7094): 770–773

    CAS  PubMed  Google Scholar 

  • Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer M W (2010). Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell, 140(3): 372–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casolari J M, Brown C R, Drubin D A, Rando O J, Silver P A (2005). Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev, 19(10): 1188–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casolari J M, Brown C R, Komili S, West J, Hieronymus H, Silver P A (2004). Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell, 117(4): 427–439

    CAS  PubMed  Google Scholar 

  • Chan E A, Teng G, Corbett E, Choudhury K R, Bassing C H, Schatz D G, Krangel MS (2013). Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2. Proc Natl Acad Sci USA, 110(48): E4628–E4637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Gilbert L A, Cimini B A, Schnitzbauer J, Zhang W, Li G W, Park J, Blackburn E H, Weissman J S, Qi L S, Huang B (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7): 1479–1491

    CAS  PubMed  Google Scholar 

  • Chuang C H, Carpenter A E, Fuchsova B, Johnson T, de Lanerolle P, Belmont A S (2006). Long-range directional movement of an interphase chromosome site. Curr Biol, 16(8): 825–831

    CAS  PubMed  Google Scholar 

  • Croft J A, Bridger J M, Boyle S, Perry P, Teague P, Bickmore W A (1999). Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol, 145(6): 1119–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Csink A K, Henikoff S (1996). Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature, 381(6582): 529–531

    CAS  PubMed  Google Scholar 

  • de Wit E, de Laat W (2012). A decade of 3C technologies: insights into nuclear organization. Genes Dev, 26(1): 11–24

    PubMed  PubMed Central  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002). Capturing chromosome conformation. Science, 295(5558): 1306–1311

    CAS  PubMed  Google Scholar 

  • Deng W, Blobel G A (2013). Manipulating nuclear architecture. Curr Opin Genet Dev, 25C: 1–7

    Google Scholar 

  • Deng W, Lee J, Wang H, Miller J, Reik A, Gregory P D, Dean A, Blobel G A (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149(6): 1233–1244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dernburg A F, Broman KW, Fung J C, Marshall WF, Philips J, Agard D A, Sedat J W (1996). Perturbation of nuclear architecture by longdistance chromosome interactions. Cell, 85(5): 745–759

    CAS  PubMed  Google Scholar 

  • Dieppois G, Iglesias N, Stutz F (2006). Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol, 26(21): 7858–7870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrova D S, Gilbert D M (1999). The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell, 4(6): 983–993

    CAS  PubMed  Google Scholar 

  • Dirks R W, de Pauw E S, Raap A K (1997). Splicing factors associate with nuclear HCMV-IE transcripts after transcriptional activation of the gene, but dissociate upon transcription inhibition: evidence for a dynamic organization of splicing factors. J Cell Sci, 110(Pt 4): 515–522

    CAS  PubMed  Google Scholar 

  • Dostie J, Richmond T A, Arnaout R A, Selzer R R, Lee WL, Honan T A, Rubio E D, Krumm A, Lamb J, Nusbaum C, Green R D, Dekker J (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 16(10): 1299–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drubin D A, Garakani A M, Silver P A (2006). Motion as a phenotype: the use of live-cell imaging and machine visual screening to characterize transcription-dependent chromosome dynamics. BMC Cell Biol, 7(1): 19

    PubMed  PubMed Central  Google Scholar 

  • Dundr M, Ospina J K, Sung M H, John S, Upender M, Ried T, Hager G L, Matera A G (2007). Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol, 179(6): 1095–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrai C, de Castro I J, Lavitas L, Chotalia M, Pombo A (2010). Gene positioning. Cold Spring Harb Perspect Biol, 2(6): a000588

    PubMed  PubMed Central  Google Scholar 

  • Finlan L E, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb J R, Bickmore W A (2008). Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet, 4(3): e1000039

    PubMed  PubMed Central  Google Scholar 

  • Fraser P, Bickmore W (2007). Nuclear organization of the genome and the potential for gene regulation. Nature, 447(7143): 413–417

    CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach C A, Barbas C F 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 31(7): 397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Germann S, Juul-Jensen T, Letarnec B, Gaudin V (2006). DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J, 48(1): 153–163

    CAS  PubMed  Google Scholar 

  • Geyer P K, Vitalini M W, Wallrath L L (2011). Nuclear organization: taking a position on gene expression. Curr Opin Cell Biol, 23(3): 354–359

    CAS  PubMed  Google Scholar 

  • Gilbert D M (2001). Nuclear position leaves its mark on replication timing. J Cell Biol, 152(2): F11–F15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green EM, Jiang Y, Joyner R, Weis K (2012). A negative feedback loop at the nuclear periphery regulates GAL gene expression. Mol Biol Cell, 23(7): 1367–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guelen L, Pagie L, Brasset E, Meuleman W, Faza M B, Talhout W, Eussen B H, de Klein A, Wessels L, de Laat W, van Steensel B (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 453(7197): 948–951

    CAS  PubMed  Google Scholar 

  • Haaf T, Schmid M (1991). Chromosome topology in mammalian interphase nuclei. Exp Cell Res, 192(2): 325–332

    CAS  PubMed  Google Scholar 

  • Hepperger C, Mannes A, Merz J, Peters J, Dietzel S (2008). Threedimensional positioning of genes in mouse cell nuclei. Chromosoma, 117(6): 535–551

    PubMed  Google Scholar 

  • Hewitt S L, High F A, Reiner S L, Fisher A G, Merkenschlager M (2004). Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur J Immunol, 34(12): 3604–3613

    CAS  PubMed  Google Scholar 

  • Hofmann W A, Johnson T, Klapczynski M, Fan J L, de Lanerolle P (2006). From transcription to transport: emerging roles for nuclear myosin I. Biochem Cell Biol, 84(4): 418–426

    CAS  PubMed  Google Scholar 

  • Horike S, Cai S, Miyano M, Cheng J F, Kohwi-Shigematsu T (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet, 37(1): 31–40

    CAS  PubMed  Google Scholar 

  • Ishii K, Arib G, Lin C, Van Houwe G, Laemmli U K (2002). Chromatin boundaries in budding yeast: the nuclear pore connection. Cell, 109(5): 551–562

    CAS  PubMed  Google Scholar 

  • Isogai Y, Tjian R (2003). Targeting genes and transcription factors to segregated nuclear compartments. Curr Opin Cell Biol, 15(3): 296–303

    CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821

    CAS  PubMed  Google Scholar 

  • Jost K L, Haase S, Smeets D, Schrode N, Schmiedel J M, Bertulat B, Herzel H, Cremer M, Cardoso M C (2011). 3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Res, 39(17): e113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalverda B, Fornerod M (2010). Characterization of genome-nucleoporin interactions in Drosophila links chromatin insulators to the nuclear pore complex. Cell Cycle, 9(24): 4812–4817

    CAS  PubMed  Google Scholar 

  • Kalverda B, Pickersgill H, Shloma V V, Fornerod M (2010). Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell, 140(3): 360–371

    CAS  PubMed  Google Scholar 

  • Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries S S, Janssen H, Amendola M, Nolen L D, Bickmore W A, van Steensel B (2013). Single-cell dynamics of genome-nuclear lamina interactions. Cell, 153(1): 178–192

    CAS  PubMed  Google Scholar 

  • Kind J, van Steensel B (2010). Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol, 22(3): 320–325

    CAS  PubMed  Google Scholar 

  • Kohwi M, Lupton J R, Lai S L, Miller M R, Doe C Q (2013). Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell, 152(1–2): 97–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosak S T, Skok J A, Medina K L, Riblet R, Le Beau M M, Fisher A G, Singh H (2002). Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science, 296(5565): 158–162

    CAS  PubMed  Google Scholar 

  • Kouzine F, Liu J, Sanford S, Chung H J, Levens D (2004). The dynamic response of upstream DNA to transcription-generated torsional stress. Nat Struct Mol Biol, 11(11): 1092–1100

    CAS  PubMed  Google Scholar 

  • Kress C, Kiêu K, Droineau S, Galio L, Devinoy E (2011). Specific positioning of the casein gene cluster in active nuclear domains in luminal mammary epithelial cells. Chromosome Res, 19(8): 979–997

    CAS  PubMed  Google Scholar 

  • Kumaran R I, Spector D L (2008). A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol, 180(1): 51–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu S, Horn P J, Peterson C L (2007). SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev, 21(8): 997–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamond A I, Sleeman J E (2003). Nuclear substructure and dynamics. Curr Biol, 13(21): R825–R828

    CAS  PubMed  Google Scholar 

  • Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 8(2): 104–115

    PubMed  Google Scholar 

  • Lawrence J B, Clemson C M (2008). Gene associations: true romance or chance meeting in a nuclear neighborhood? J Cell Biol, 182(6): 1035–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Quinn J C, Prasanth K V, Swiss V A, Economides K D, Camacho M M, Spector D L, Abate-Shen C (2006). PIAS1 confers DNAbinding specificity on the Msx1 homeoprotein. Genes Dev, 20(7): 784–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levsky J M, Singer R H (2003). Fluorescence in situ hybridization: past, present and future. J Cell Sci, 116(Pt 14): 2833–2838

    CAS  PubMed  Google Scholar 

  • Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950): 289–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells A L, Chao J A, Park H Y, de Turris V, Lopez-Jones M, Singer R H (2011). A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods, 8(2): 165–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luperchio T R, Wong X, Reddy K L (2014). Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr Opin Genet Dev, 25C: 50–61

    Google Scholar 

  • Luthra R, Kerr S C, Harreman MT, Apponi L H, Fasken MB, Ramineni S, Chaurasia S, Valentini S R, Corbett A H (2007). Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem, 282(5): 3042–3049

    CAS  PubMed  Google Scholar 

  • Marko J F, Poirier M G (2003). Micromechanics of chromatin and chromosomes. Biochem Cell Biol, 81(3): 209–220

    CAS  PubMed  Google Scholar 

  • Mattout A, Meshorer E (2010). Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr Opin Cell Biol, 22(3): 334–341

    CAS  PubMed  Google Scholar 

  • Matzke A J, Huettel B, van der Winden J, Matzke M(2005). Use of twocolor fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol, 139(4): 1586–1596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meaburn K J, Gudla P R, Khan S, Lockett S J, Misteli T (2009). Diseasespecific gene repositioning in breast cancer. J Cell Biol, 187(6): 801–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meaburn K J, Misteli T (2008). Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol, 180(1): 39–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meister P, Towbin B D, Pike B L, Ponti A, Gasser S M (2010). The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev, 24(8): 766–782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meuleman W, Peric-Hupkes D, Kind J, Beaudry J B, Pagie L, Kellis M, Reinders M, Wessels L, van Steensel B (2013). Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res, 23(2): 270–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mewborn S K, Puckelwartz M J, Abuisneineh F, Fahrenbach J P, Zhang Y, MacLeod H, Dellefave L, Pytel P, Selig S, Labno C M, Reddy K, Singh H, McNally E (2010). Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS ONE, 5(12): e14342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misteli T (2007). Beyond the sequence: cellular organization of genome function. Cell, 128(4): 787–800

    CAS  PubMed  Google Scholar 

  • Miyanari Y, Ziegler-Birling C, Torres-Padilla M E (2013). Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol, 20(11): 1321–1324

    CAS  PubMed  Google Scholar 

  • Moen P T Jr, Johnson C V, Byron M, Shopland L S, de la Serna I L, Imbalzano A N, Lawrence J B (2004). Repositioning of musclespecific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell, 15(1): 197–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano T, Lubling Y, Stevens T J, Schoenfelder S, Yaffe E, Dean W, Laue E D, Tanay A, Fraser P (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502(7469): 59–64

    CAS  PubMed  Google Scholar 

  • Naumova N, Smith E M, Zhan Y, Dekker J (2012). Analysis of longrange chromatin interactions using Chromosome Conformation Capture. Methods, 58(3): 192–203

    CAS  PubMed  Google Scholar 

  • Németh A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Péterfia B, Solovei I, Cremer T, Dopazo J, Längst G (2010). Initial genomics of the human nucleolus. PLoS Genet, 6(3): e1000889

    PubMed  PubMed Central  Google Scholar 

  • Neumann F R, Dion V, Gehlen L R, Tsai-Pflugfelder M, Schmid R, Taddei A, Gasser S M (2012). Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev, 26(4): 369–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Gorman S, Fox D T, Wahl G M (1991). Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science, 251(4999): 1351–1355

    PubMed  Google Scholar 

  • Osborne C S, Chakalova L, Brown K E, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell J A, Lopes S, Reik W, Fraser P (2004). Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet, 36(10): 1065–1071

    CAS  PubMed  Google Scholar 

  • Osborne C S, Chakalova L, Mitchell J A, Horton A, Wood A L, Bolland D J, Corcoran A E, Fraser P (2007). Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol, 5(8): e192

    PubMed  PubMed Central  Google Scholar 

  • Parada L, Misteli T (2002). Chromosome positioning in the interphase nucleus. Trends Cell Biol, 12(9): 425–432

    CAS  PubMed  Google Scholar 

  • Patel N S, Rhinn M, Semprich C I, Halley P A, Dollé P, Bickmore W A, Storey K G (2013). FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription. PLoS Genet, 9(7): e1003614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pederson T (2002). Dynamics and genome-centricity of interchromatin domains in the nucleus. Nat Cell Biol, 4(12): E287–E291

    CAS  PubMed  Google Scholar 

  • Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman S W, Solovei I, Brugman W, Gräf S, Flicek P, Kerkhoven R M, van Lohuizen M, Reinders M, Wessels L, van Steensel B (2010). Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell, 38(4): 603–613

    CAS  PubMed  Google Scholar 

  • Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006). Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet, 38(9): 1005–1014

    CAS  PubMed  Google Scholar 

  • Ragoczy T, Bender M A, Telling A, Byron R, Groudine M (2006). The locus control region is required for association of the murine betaglobin locus with engaged transcription factories during erythroid maturation. Genes Dev, 20(11): 1447–1457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy K L, Zullo J M, Bertolino E, Singh H (2008). Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature, 452(7184): 243–247

    CAS  PubMed  Google Scholar 

  • Robinett C C, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont A S (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol, 135(6 Pt 2): 1685–1700

    CAS  PubMed  Google Scholar 

  • Rohner S, Kalck V, Wang X, Ikegami K, Lieb J D, Gasser S M, Meister P (2013). Promoter- and RNA polymerase II-dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans. J Cell Biol, 200(5): 589–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma N J, Haley TM, Barbara K E, Buford T D, Willis K A, Santangelo G M (2007). Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics, 175(3): 1127–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agard D A, Gustafsson M G, Leonhardt H, Sedat J W (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320(5881): 1332–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli U K (2006). Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell, 21(3): 379–391

    CAS  PubMed  Google Scholar 

  • Schoenfelder S, Sexton T, Chakalova L, Cope N F, Horton A, Andrews S, Kurukuti S, Mitchell J A, Umlauf D, Dimitrova D S, Eskiw C H, Luo Y, Wei C L, Ruan Y, Bieker J J, Fraser P (2010). Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet, 42(1): 53–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith M A, Ning Y, Ledbetter D H, Bar-Am I, Soenksen D, Garini Y, Ried T (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273(5274): 494–497

    PubMed  Google Scholar 

  • Sexton T, Schober H, Fraser P, Gasser S M (2007). Gene regulation through nuclear organization. Nat Struct Mol Biol, 14(11): 1049–1055

    CAS  PubMed  Google Scholar 

  • Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, deWit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354

    CAS  PubMed  Google Scholar 

  • Simonis M, Kooren J, de Laat W (2007). An evaluation of 3C-based methods to capture DNA interactions. Nat Methods, 4(11): 895–901

    CAS  PubMed  Google Scholar 

  • Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002). Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res, 276(1): 10–23

    CAS  PubMed  Google Scholar 

  • Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, Cremer T, Guck J, Joffe B (2009). Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell, 137(2): 356–368

    CAS  PubMed  Google Scholar 

  • Spector D L (2001). Nuclear domains. J Cell Sci, 114(Pt 16): 2891–2893

    CAS  PubMed  Google Scholar 

  • Splinter E, de Wit E, Nora E P, Klous P, van de Werken H J, Zhu Y, Kaaij L J, van Ijcken W, Gribnau J, Heard E, de Laat W (2011). The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev, 25(13): 1371–1383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steglich B, Filion G J, van Steensel B, Ekwall K (2012). The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus, 3(1): 77–87

    Google Scholar 

  • Sun H B, Shen J, Yokota H (2000). Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J, 79(1): 184–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szczerbal I, Foster H A, Bridger J M (2009). The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma, 118(5): 647–663

    CAS  PubMed  Google Scholar 

  • Taddei A (2007). Active genes at the nuclear pore complex. Curr Opin Cell Biol, 19(3): 305–310

    CAS  PubMed  Google Scholar 

  • Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser S M (2006). Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature, 441(7094): 774–778

    CAS  PubMed  Google Scholar 

  • Takizawa T, Gudla P R, Guo L, Lockett S, Misteli T (2008a). Allelespecific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev, 22(4): 489–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takizawa T, Meaburn K J, Misteli T (2008b). The meaning of gene positioning. Cell, 135(1): 9–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002). Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA, 99(7): 4424–4429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tolhuis B, Blom M, Kerkhoven R M, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011). Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet, 7(3): e1001343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Towbin B D, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser S M (2012). Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell, 150(5): 934–947

    CAS  PubMed  Google Scholar 

  • Towbin B D, Meister P, Pike B L, Gasser S M (2010). Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamindependent manner. Cold Spring Harb Symp Quant Biol, 75(0): 555–565

    CAS  PubMed  Google Scholar 

  • Tumbar T, Belmont A S (2001). Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol, 3(2): 134–139

    CAS  PubMed  Google Scholar 

  • van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton G J, Ariyurek Y, den Dunnen J T, Lamond A I (2010). High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell, 21(21): 3735–3748

    PubMed  PubMed Central  Google Scholar 

  • van Steensel B, Dekker J (2010). Genomics tools for unraveling chromosome architecture. Nat Biotechnol, 28(10): 1089–1095

    PubMed  Google Scholar 

  • van Steensel B, Henikoff S (2000). Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol, 18(4): 424–428

    PubMed  Google Scholar 

  • Vaquerizas J M, Suyama R, Kind J, Miura K, Luscombe N M, Akhtar A (2010). Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet, 6(2): e1000846

    PubMed  PubMed Central  Google Scholar 

  • Vermeulen M, Mulder K W, Denissov S, Pijnappel W W, van Schaik F M, Varier R A, Baltissen M P, Stunnenberg H G, Mann M, Timmers H T (2007). Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell, 131(1): 58–69

    CAS  PubMed  Google Scholar 

  • Vodala S, Abruzzi K C, Rosbash M (2008). The nuclear exosome and adenylation regulate posttranscriptional tethering of yeast GAL genes to the nuclear periphery. Mol Cell, 31(1): 104–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel M J, Peric-Hupkes D, van Steensel B (2007). Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc, 2(6): 1467–1478

    CAS  PubMed  Google Scholar 

  • Williams R R, Azuara V, Perry P, Sauer S, Dvorkina M, Jørgensen H, Roix J, McQueen P, Misteli T, Merkenschlager M, Fisher A G (2006). Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci, 119(Pt 1): 132–140

    CAS  PubMed  Google Scholar 

  • Wu F, Yao J (2013). Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genomics, 14(1): 591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Johnson C V, Moen P T Jr, McNeil J A, Lawrence J (1995). Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol, 131(6 Pt 2): 1635–1647

    CAS  PubMed  Google Scholar 

  • Yao J, Fetter R D, Hu P, Betzig E, Tjian R (2011). Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev, 25(6): 569–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zink D, Amaral M D, Englmann A, Lang S, Clarke L A, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004). Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol, 166(6): 815–825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zullo J M, Demarco I A, Piqué-Regi R, Gaffney D J, Epstein C B, Spooner C J, Luperchio T R, Bernstein B E, Pritchard J K, Reddy K L, Singh H (2012). DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell, 149(7): 1474–1487

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnoi, N., Yao, J. Gene positioning and genome function. Front. Biol. 9, 255–268 (2014). https://doi.org/10.1007/s11515-014-1313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1313-3

Keywords

Navigation