Skip to main content
Log in

Current approaches for efficient genetic editing in human pluripotent stem cells

  • Mini-Review
  • Published:
Frontiers in Biology

Abstract

Human pluripotent stem cells have been much anticipated as a powerful system to study developmental events, model genetic disorders, and serve as a source of autologous cells for cell therapy in genetic disorders. Precise genetic manipulation is crucial to all these applications, and many recent advances have been made in site specific nuclease systems like zinc finger nucleases, TALENs, and CRISPR/Cas. In this review, we address the importance of site-specific genome modification and how this technology can be applied to manipulate human pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bibikova M, Beumer K, Trautman J K, Carroll D (2003). Enhancing gene targeting with designed zinc finger nucleases. Science, 300(5620): 764

    Article  PubMed  CAS  Google Scholar 

  • Bibikova M, Golic M, Golic K G, Carroll D (2002). Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 161(3): 1169–1175

    PubMed  CAS  Google Scholar 

  • Bogdanove A J, Voytas D F (2011). TAL effectors: customizable proteins for DNA targeting. Science, 333(6051): 1843–1846

    Article  PubMed  CAS  Google Scholar 

  • Brunet E, Simsek D, Tomishima M, DeKelver R, Choi V M, Gregory P, Urnov F, Weinstock D M, Jasin M (2009). Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci USA, 106(26): 10620–10625

    Article  PubMed  CAS  Google Scholar 

  • Bultmann S, Morbitzer R, Schmidt C S, Thanisch K, Spada F, Elsaesser J, Lahaye T, Leonhardt H (2012). Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res, 40(12): 5368–5377

    Article  PubMed  CAS  Google Scholar 

  • Carroll D (2011). Genome engineering with zinc-finger nucleases. Genetics, 188(4): 773–782

    Article  PubMed  CAS  Google Scholar 

  • Cermak T, Doyle E L, Christian M, Wang L, Zhang Y, Schmidt C, Baller J A, Somia N V, Bogdanove A J, Voytas D F (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 39(12): e82

    Article  PubMed  CAS  Google Scholar 

  • Chaikind B, Kilambi K P, Gray J J, Ostermeier M (2012). Targeted DNA methylation using an artificially bisected M.HhaI fused to zinc fingers. PLoS ONE, 7(9): e44852

    Article  PubMed  CAS  Google Scholar 

  • Chang C J, Bouhassira E E (2012). Zinc-finger nuclease-mediated correction of α-thalassemia in iPS cells. Blood, 120(19): 3906–3914

    Article  PubMed  CAS  Google Scholar 

  • Cho S W, Kim S, Kim J M, Kim J S (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 31(3): 230–232

    Article  PubMed  CAS  Google Scholar 

  • Christian M, Cermak T, Doyle E L, Schmidt C, Zhang F, Hummel A, Bogdanove A J, Voytas D F (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2): 757–761

    Article  PubMed  CAS  Google Scholar 

  • Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819–823

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Lee Y K, Schaefer E A, Peters D T, Veres A, Kim K, Kuperwasser N, Motola D L, Meissner T B, Hendriks W T, Trevisan M, Gupta R M, Moisan A, Banks E, Friesen M, Schinzel R T, Xia F, Tang A, Xia Y, Figueroa E, Wann A, Ahfeldt T, Daheron L, Zhang F, Rubin L L, Peng L F, Chung R T, Musunuru K, Cowan C A (2013). A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell, 12(2): 238–251

    Article  PubMed  CAS  Google Scholar 

  • Doetschman T, Gregg R G, Maeda N, Hooper M L, Melton D W, Thompson S, Smithies O (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 330(6148): 576–578

    Article  PubMed  CAS  Google Scholar 

  • Doyle J P, Dougherty J D, Heiman M, Schmidt E F, Stevens T R, Ma G, Bupp S, Shrestha P, Shah R D, Doughty M L, Gong S, Greengard P, Heintz N (2008). Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell, 135(4): 749–762

    Article  PubMed  CAS  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus M H, Chandrasegaran S (2005). Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res, 33(18): 5978–5990

    Article  PubMed  CAS  Google Scholar 

  • Heiman M, Schaefer A, Gong S, Peterson J D, Day M, Ramsey K E, Suárez-Fariñas M, Schwarz C, Stephan D A, Surmeier D J, Greengard P, Heintz N (2008). A translational profiling approach for the molecular characterization of CNS cell types. Cell, 135(4): 738–748

    Article  PubMed  CAS  Google Scholar 

  • Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver R C, Katibah G E, Amora R, Boydston E A, Zeitler B, Meng X, Miller J C, Zhang L, Rebar E J, Gregory P D, Urnov F D, Jaenisch R (2009). Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol, 27(9): 851–857

    Article  PubMed  CAS  Google Scholar 

  • Hockemeyer D, Wang H, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 29(8): 731–734

    Article  PubMed  CAS  Google Scholar 

  • Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3): 227–229

    Article  PubMed  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Kweon J, Kim A, Chon J K, Yoo J Y, Kim H J, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee M S, Go E M, Song H J, Kim H, Cho N, Bang D, Kim S, Kim J S (2013). A library of TAL effector nucleases spanning the human genome. Nat Biotechnol, 31(3): 251–258

    Article  PubMed  CAS  Google Scholar 

  • Lengner C J, Gimelbrant A A, Erwin J A, Cheng A W, Guenther M G, Welstead G G, Alagappan R, Frampton G M, Xu P, Muffat J, Santagata S, Powers D, Barrett C B, Young R A, Lee J T, Jaenisch R, Mitalipova M (2010). Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell, 141(5): 872–883

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Ye Z, Kim Y, Sharkis S, Jang Y Y (2010). Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology, 51(5): 1810–1819

    Article  PubMed  CAS  Google Scholar 

  • Maeder M L, Thibodeau-Beganny S, Osiak A, Wright D A, Anthony R M, Eichtinger M, Jiang T, Foley J E, Winfrey R J, Townsend J A, Unger-Wallace E, Sander J D, Müller-Lerch F, Fu F, Pearlberg J, Göbel C, Dassie J P, Pruett-Miller S M, Porteus M H, Sgroi D C, Iafrate A J, Dobbs D, McCray P B Jr, Cathomen T, Voytas D F, Joung J K (2008). Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell, 31(2): 294–301

    Article  PubMed  CAS  Google Scholar 

  • Mali P, Aach J, Lee J H, Levner D, Nip L, Church G M (2013). Barcoding cells using cell-surface programmable DNA-binding domains. Nat Methods, 10(5): 403–406

    Article  PubMed  CAS  Google Scholar 

  • Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826

    Article  PubMed  CAS  Google Scholar 

  • Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J, Dulay G P, Hua K L, Ankoudinova I, Cost G J, Urnov F D, Zhang H S, Holmes M C, Zhang L, Gregory P D, Rebar E J (2011). A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 29(2): 143–148

    Article  PubMed  CAS  Google Scholar 

  • Mussolino C, Cathomen T (2011). On target? Tracing zinc-fingernuclease specificity. Nat Methods, 8(9): 725–726

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A, Xin L, Sharov A A, Thomas M, Mowrer G, Meyers E, Piao Y, Mehta S, Yee S, Nakatake Y, Stagg C, Sharova L, Correa-Cerro L S, Bassey U, Hoang H, Kim E, Tapnio R, Qian Y, Dudekula D, Zalzman M, Li M, Falco G, Yang H T, Lee S L, Monti M, Stanghellini I, Islam M N, Nagaraja R, Goldberg I, Wang W, Longo D L, Schlessinger D, Ko M S (2009). Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. Cell Stem Cell, 5(4): 420–433

    Article  PubMed  CAS  Google Scholar 

  • Piganeau M, Ghezraoui H, De Cian A, Guittat L, Tomishima M, Perrouault L, René O, Katibah G E, Zhang L, Holmes M C, Doyon Y, Concordet J P, Giovannangeli C, Jasin M, Brunet E (2013). Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res, 23(7): 1182–1193

    Article  PubMed  CAS  Google Scholar 

  • Porteus M H, Baltimore D (2003). Chimeric nucleases stimulate gene targeting in human cells. Science, 300(5620): 763

    Article  PubMed  Google Scholar 

  • Qi L S, Larson MH, Gilbert L A, Doudna J A, Weissman J S, Arkin A P, Lim W A (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5): 1173–1183

    Article  PubMed  CAS  Google Scholar 

  • Sermon K D, Simon C, Braude P, Viville S, Borstlap J, Veiga A (2009). Creation of a registry for human embryonic stem cells carrying an inherited defect: joint collaboration between ESHRE and hESCreg. Hum Reprod, 24(7): 1556–1560

    Article  PubMed  CAS  Google Scholar 

  • Smih F, Rouet P, Romanienko P J, Jasin M (1995). Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res, 23(24): 5012–5019

    Article  PubMed  CAS  Google Scholar 

  • Soldner F, Laganière J, Cheng A W, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe L I, Myers R H, Lindquist S, Zhang L, Guschin D, Fong L K, Vu B J, Meng X, Urnov F D, Rebar E J, Gregory P D, Zhang H S, Jaenisch R (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146(2): 318–331

    Article  PubMed  CAS  Google Scholar 

  • Stephenson E L, Mason C, Braude P R (2009). Preimplantation genetic diagnosis as a source of human embryonic stem cells for disease research and drug discovery. BJOG, 116(2): 158–165

    Article  PubMed  CAS  Google Scholar 

  • Sussman D, Chadsey M, Fauce S, Engel A, Bruett A, Monnat R Jr, Stoddard B L, Seligman LM(2004). Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol, 342(1): 31–41

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Amato P, Sparman M, Gutierrez N M, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee H S, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer R L, Wolf D, Mitalipov S (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153(6): 1228–1238

    Article  PubMed  CAS  Google Scholar 

  • Tomishima M J, Hadjantonakis A K, Gong S, Studer L (2007). Production of green fluorescent protein transgenic embryonic stem cells using the GENSAT bacterial artificial chromosome library. Stem Cells, 25(1): 39–45

    Article  PubMed  CAS  Google Scholar 

  • Urnov F D, Rebar E J, Holmes M C, Zhang H S, Gregory P D (2010). Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 11(9): 636–646

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4): 910–918

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zheng C G, Jiang Y, Zhang J, Chen J, Yao C, Zhao Q, Liu S, Chen K, Du J, Yang Z, Gao S (2012). Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res, 22(4): 637–648

    Article  PubMed  CAS  Google Scholar 

  • Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X, Zhu Z, Lin S, Zhang B (2013). Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res, doi: 10.1093/nar/gkt464

    Google Scholar 

  • Yamanaka S, Blau H M (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature, 465(7299): 704–712

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Thomson J A (2008). Pluripotent stem cell lines. Genes Dev, 22(15): 1987–1997

    Article  PubMed  CAS  Google Scholar 

  • Yusa K, Rashid S T, Strick-Marchand H, Varela I, Liu P Q, Paschon D E, Miranda E, Ordóñez A, Hannan N R, Rouhani F J, Darche S, Alexander G, Marciniak S J, Fusaki N, Hasegawa M, Holmes M C, Di Santo J P, Lomas D A, Bradley A, Vallier L (2011). Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature, 478(7369): 391–394

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Maeder M L, Mali P, Pruett-Miller S M, Thibodeau-Beganny S, Chou B K, Chen G, Ye Z, Park I H, Daley G Q, Porteus MH, Joung J K, Cheng L (2009). Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell, 5(1): 97–110

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Mali P, Huang X, Dowey S N, Cheng L (2011). Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood, 118(17): 4599–4608

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabsang Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee-Clavin, B., Tomishima, M. & Lee, G. Current approaches for efficient genetic editing in human pluripotent stem cells. Front. Biol. 8, 461–467 (2013). https://doi.org/10.1007/s11515-013-1275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-013-1275-x

Keywords

Navigation