Skip to main content
Log in

Plant calcium oxalate crystal formation, function, and its impact on human health

  • Review
  • Published:
Frontiers in Biology

Abstract

Crystals of calcium oxalate have been observed among members from most taxonomic groups of photosynthetic organisms ranging from the smallest algae to the largest trees. The biological roles for calcium oxalate crystal formation in plant growth and development include high-capacity calcium regulation, protection against herbivory, and tolerance to heavy metals. Using a variety of experimental approaches researchers have begun to unravel the complex mechanisms controlling formation of this biomineral. Given the important roles for calcium oxalate formation in plant survival and the antinutrient and pathological impact on human health through its presence in plant foods, researchers are avidly seeking a more comprehensive understanding of how these crystals form. Such an understanding will be useful in efforts to design strategies aimed at improving the nutritional quality and production of plant foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed A K, Johnson K A (2000). The effect of the ammonium: nitrate nitrogen ration, total nitrogen, salinity (NaCl) and calcium on oxalate levels of Tetragonia tetragonioides Pallas. Kunz. J Hortic Sci Biotechnol, 75: 533–538

    CAS  Google Scholar 

  • Arnott H J, Pautard F G E (1970). Calcification in plants. In: Biological Calcification: Cellular and Molecular Aspects (Schraer H, Ed.). New York: Appleton-Century-Crofts, 375–446

    Google Scholar 

  • Assailly A (1954). Sur les rapports de l’oxalate de chaux et de l’amidon. Cr Acad Sci D, 238: 1902–1904

    CAS  Google Scholar 

  • Barnabas A D, Arnott H J (1990). Calcium oxalate crystal formation in the bean (Phaseolus vulgaris L.) seed coat. Bot Gaz, 151(3): 331–341

    CAS  Google Scholar 

  • Borchert R (1985). Calcium-induced patterns of calcium-oxalate crystals in isolated leaflets of Gleditsia triacanthos L. and Albizia julibrissin Durazz. Planta, 165(3): 301–310

    CAS  PubMed  Google Scholar 

  • Borchert R (1986). Calcium acetate induces calcium uptake and formation of calcium-oxalate crystals in isolated leaflets of Gleditsia tracanthos L. Planta, 168(4): 571–578

    CAS  PubMed  Google Scholar 

  • Bouropoulos N, Weiner S, Addadi L (2001). Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules. Chemistry, 7(9): 1881–1888

    PubMed  CAS  Google Scholar 

  • Calmes J (1969). Contribution a l’etude du metabolisme de l’acide oxalique chez la Vigne vierge (Parthenocissus tricuspidata Planchon). Cr Acad Sci D, 269(6): 704–707

    CAS  Google Scholar 

  • Calmes J, Carles J (1970). La repartition et l’evolution des cristaux d’oxalate de calcium dans les tissus de vigne vierge au cours d’un cycle de vegetation. B Soc Bot Fr, 117(5/6): 189–198

    CAS  Google Scholar 

  • Catherwood D J, Savage G P, Mason S M, Scheffer J J C, Douglas J A (2007). Oxalate content of cormels of Japanese taro (Colocasia esculenta (L.) Schott) and the effect of cooking. J Food Compost Anal, 20(3–4): 147–151

    CAS  Google Scholar 

  • Choi Y E, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001). Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta, 213(1): 45–50

    PubMed  CAS  Google Scholar 

  • Coté G G (2009). Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae). Am J Bot, 96(7): 1245–1254

    PubMed  Google Scholar 

  • Crofts A J, Leborgne-Castel N, Hillmer S, Robinson D G, Phillipson B, Carlsson L E, Ashford D A, Denecke J (1999). Saturation of the endoplasmic reticulum retention machinery reveals anterograde bulk flow. Plant Cell, 11(11): 2233–2248

    PubMed  CAS  PubMed Central  Google Scholar 

  • De Yoreo J J, Qiu S R, Hoyer J R (2006). Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol, 291(6): F1123–F1132

    PubMed  Google Scholar 

  • Franceschi V R (1989). Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma, 148(2–3): 130–137

    Google Scholar 

  • Franceschi V R, Horner H T Jr (1979). Use of Psychotria puncata callus in study of calcium oxalate crystal idioblast formation. Z Pflanzenphysiol, 67: 61–75

    Google Scholar 

  • Franceschi V R, Horner H T Jr (1980). Calcium oxalate crystals in plants. Bot Rev, 46(4): 361–427

    CAS  Google Scholar 

  • Franceschi V R, Li X, Zhang D, Okita T W (1993). Calsequestrinlike calcium-binding protein is expressed in calcium-accumulating cells of Pistia stratiotes. Proc Natl Acad Sci USA, 90(15): 6986–6990

    PubMed  CAS  PubMed Central  Google Scholar 

  • Franceschi V R, Loewus F A (1995). Oxalate biosynthesis and function in plants and fungi. In: Calcium Oxalate in Biological Systems (Khan S R Ed.). Boca Raton: CRC Press, 113–130

    Google Scholar 

  • Franceschi V R, Nakata PA (2005). Calcium oxalate in plants: formation and function. Annu Rev Plant Biol, 56(1): 41–71

    PubMed  CAS  Google Scholar 

  • Franceschi V R, Schueren A M (1986). Incorporation of strontium into plant calcium oxalate crystals. Protoplasma, 130(2–3): 199–205

    CAS  Google Scholar 

  • Franceschi V R, Tarlyn N M (2002). L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol, 130(2): 649–656

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frank E, Jensen WA (1970). On the formation of the pattern of crystal idiobalsts in Canavalia ensiformis DC. IV. The fine structure of the crystal cells. Planta, 95: 202–217

    Google Scholar 

  • Frey-Wyssling A (1981). Crystallography of the two hydrates of crystalline calcium oxalate in plants. Am J Bot, 68(1): 130–141

    CAS  Google Scholar 

  • Furuhashi T, Schwarzinger C, Miksik I, Smrz M, Beran A (2009). Molluscan shell evolution with review of shell calcification hypothesis. Comp Biochem Physiol B Biochem Mol Biol, 154(3): 351–371

    PubMed  Google Scholar 

  • Gallaher R N (1975). The occurrence of calcium in plant tissue as crystals of calcium oxalate. Commun Soil Sci Plan, 6(3): 315–330

    CAS  Google Scholar 

  • Gélinas B, Seguin P (2007). Oxalate in grain amaranth. J Agric Food Chem, 55(12): 4789–4794

    PubMed  Google Scholar 

  • Green M A, Fry S C (2005). Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature, 433(7021): 83–87

    PubMed  CAS  Google Scholar 

  • Guo Z, Tan H, Zhu Z, Lu S, Zhou B (2005). Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. Plant Physiol Biochem, 43(10–11): 955–962

    PubMed  CAS  Google Scholar 

  • Hartl W P, Klapper H, Barbier B, Ensikat H J, Dronskowski R, Müller P, Ostendorp G, Tye A, Bauer R, Barthlott W (2007). Diversity of calcium oxalate crystals in Cactaceae. Can J Bot, 85(5): 501–517

    CAS  Google Scholar 

  • Heaney R P, Recker R R, Hinders S M (1988). Variability of calcium absorption. Am J Clin Nutr, 47(2): 262–264

    PubMed  CAS  Google Scholar 

  • Heaney R P, Weaver C M (1989). Oxalate: effect on calcium absorbability. Am J Clin Nutr, 50(4): 830–832

    PubMed  CAS  Google Scholar 

  • Heaney R P, Weaver C M (1990). Calcium absorption from kale. Am J Clin Nutr, 51(4): 656–657

    PubMed  CAS  Google Scholar 

  • Hodgkinson A (1977). Oxalic Acid Biology and Medicine. Academic Press: New York

    Google Scholar 

  • Holmes R P, Goodman H O, Assimos D G (1995). Dietary oxalate and its intestinal absorption. Scanning Microsc, 9(4): 1109–1118, discussion 1118–1120

    PubMed  CAS  Google Scholar 

  • Holmes R P, Goodman H O, Assimos D G (2001). Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int, 59(1): 270–276

    PubMed  CAS  Google Scholar 

  • Horner H T, Kausch A P, Wagner B L (2000). Ascorbic Acid: A precursor of oxalate in crystal idioblasts of Yucca Torreyi in liquid root culture. Int J Plant Sci, 161(6): 861–868

    CAS  Google Scholar 

  • Horner H T, Wagner B L (1980). The association of druse crystals with the developing stomium of Capsicum annuum (Solanaceae) anthers. Am J Bot, 67(9): 1347–1360

    Google Scholar 

  • Horner H T, Wagner B L (1995). Calcium oxalate formation in higher plants. In: Calcium Oxalate in Biological Systems. (Khan S R Ed.). Boca Raton: CRC Press, Florida, 53–72

    Google Scholar 

  • Hudgins J W, Krekling T, Franceschi V R (2003). Distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism? New Phytol, 159(3): 677–690

    CAS  Google Scholar 

  • Ilarslan H, Palmer R G, Horner H T (2001). Calcium oxalate crystals in developing seeds of soybean. Ann Bot (Lond), 88(2): 243–257

    CAS  Google Scholar 

  • Ji XM, Peng X X (2005). Oxalate accumulation as regulated by nitrogen forms and its relationship to photosynthesis in rice (Oryza sativa L.). J Int Plant Biol, 47(7): 831–838

    CAS  Google Scholar 

  • Jou Y, Wang Y, Yen H E (2007). Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Funct Plant Biol, 34(4): 353–359

    CAS  Google Scholar 

  • Katayama H, Fujibayashi Y, Nagaoka S, Sugimura Y (2007). Cell wall sheath surrounding calcium oxalate crystals in mulberry idioblasts. Protoplasma, 231(3–4): 245–248

    PubMed  CAS  Google Scholar 

  • Kausch A P, Horner H T (1984). Differentiation of raphide crystal idioblasts in isolated root cultures of Yucca torreyi (Agavaceae). Can J Bot, 62(7): 1474–1484

    Google Scholar 

  • Kausch A P, Horner H T (1985). Absence of CeCl3-detectable peroxisomal glycolate-oxidase activity in developing raphide crystal idioblasts in leaves of Psychotria punctata Vatke and roots of Yucca torreyi L. Planta, 164(1): 35–43

    CAS  PubMed  Google Scholar 

  • Keates S E, Tarlyn N M, Loewus F A, Franceschi V R (2000). LAscorbic acid and L-galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes. Phytochemistry, 53(4): 433–440

    PubMed  CAS  Google Scholar 

  • Kochian L V (1995). Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol, 46(1): 237–260

    CAS  Google Scholar 

  • Korth K L, Doege S J, Park S H, Goggin F L, Wang Q, Gomez S K, Liu G, Jia L, Nakata P A (2006). Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol, 141(1): 188–195

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kostman T A, Franceschi V R (2000). Cell and calcium oxalate crystal growth is coordinated to achieve high-capacity calcium regulation in plants. Protoplasma, 214(3–4): 166–179

    CAS  Google Scholar 

  • Kostman T A, Franceschi V R, Nakata P A (2003). Endoplasmic reticulum sub-compartments are involved in calcium sequestration within raphide crystal idioblasts of Pistia stratiotes L. Plant Sci, 165(1): 205–212

    CAS  Google Scholar 

  • Kostman T A, Koscher J R (2003). L-galactono-gamma-lactone dehydrogenase is present in calcium oxalate crystal idioblasts of two plant species. Plant Physiol Biochem, 41(3): 201–206

    CAS  Google Scholar 

  • Kostman T A, Tarlyn N M, Franceschi V R (2007). Autoradiography utilising labelled ascorbic acid reveals biochemical and morphological details in diverse calcium oxalate crystal-forming species. Funct Plant Biol, 34(4): 339–342

    CAS  Google Scholar 

  • Kostman T A, Tarlyn N M, Loewus F A, Franceschi V R (2001). Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol, 125(2): 634–640

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kröger N, Poulsen N (2008). Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet, 42(1): 83–107

    PubMed  Google Scholar 

  • Kuo-Huang L L, Ku M S B, Franceschi V R (2007). Correlations between calcium oxalate crystals and photosynthetic activites in palisade cells of shade-adapted Peperomia glabella. Bot Stud (Taipei, Taiwan), 48(2): 155–164

    CAS  Google Scholar 

  • Kuo-Huang L L, Zindler-Frank E (1998). Structure of crystal cells and influences of leaf development on crystal cell development and vice versa in Phaseolus vulgaris (Leguminosae). Bot Acta, 111: 337–345

    CAS  Google Scholar 

  • Lazzaro M D, Thomson W W (1989). Ultrastructure of organic acid secreting trichomes of chickpea (Cicer arietinum). Can J Bot, 67(9): 2669–2677

    Google Scholar 

  • Leeuwenhoek A (1675). Microscopical observations. Philos T Roy Soc, 10: 380–385

    Google Scholar 

  • Lersten N, Horner H (2008a). Crystal macropatterns in leaves of Fagaceae and Nothofagaceae: a comparative study. Plant Syst Evol, 271(3–4): 239–253

    Google Scholar 

  • Lersten N, Horner H (2008b). Subepidermal idioblasts and crystal macropattern in leaves of Ticodendron (Ticodendraceae). Plant Syst Evol, 276(3–4): 255–260

    Google Scholar 

  • Lersten N, Horner H (2009). Crystal diversity and macropatterns in leaves of Oleaceae. Plant Syst Evol, 282(1–2): 87–102

    CAS  Google Scholar 

  • Lersten N R, Horner H T (2000). Types of calcium oxalate crystals and macro patterns in leaves of Prunus (Rosaceae: Prunoideae). Plant Syst Evol, 224: 83–96

    CAS  Google Scholar 

  • Lersten N R, Horner H T (2011). Unique calcium oxalate “duplex” and “concretion” idioblasts in leaves of tribe Naucleeae (Rubiaceae). Am J Bot, 98(1): 1–11

    PubMed  Google Scholar 

  • Li X X, Franceschi V R (1990). Distribution of peroxisomes and glycolate metabolism in relation to calcium oxalate formation in Lemna minor L. Eur J Cell Biol, 51(1): 9–16

    PubMed  CAS  Google Scholar 

  • Li X X, Zhang D Z, Lynch-Holm V J, Okita T W, Franceschi V R (2003). Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. Plant Physiol, 133(2): 549–559

    PubMed  CAS  PubMed Central  Google Scholar 

  • Libert B (1987). Breeding a low-oxalate rhubarb (Rheum sp. L.). J Hortic Sci Biotechnol, 62(4): 523–529

    CAS  Google Scholar 

  • Libert B, Franceschi V R (1987). Oxalate in crop plants. J Agric Food Chem, 35(6): 926–938

    CAS  Google Scholar 

  • Loewus F (1999). Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry, 52(2): 193–210

    CAS  Google Scholar 

  • Loewus F A, Wagner G, Yang J C (1975). Biosynthesis and metabolism of ascorbic acid in plants. Ann N YAcad Sci, 258(1 Second Confer): 7–23

    CAS  Google Scholar 

  • Ma J F, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997a). Internal detoxification mechanism of Al in hydrangea. Plant Physiol, 113(4): 1033–1039

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ma J F, Ryan P R, Delhaize E (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci, 6(6): 273–278

    PubMed  CAS  Google Scholar 

  • Ma J F, Zheng S J, Matsumoto H, Hiradate S (1997b). Detoxifying aluminium with buckwheat. Nature, 390(6660): 569–570

    Google Scholar 

  • Massey L K, Palmer R G, Horner H T (2001). Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods, and other edible legumes. J Agric Food Chem, 49(9): 4262–4266

    PubMed  CAS  Google Scholar 

  • Mazen A M A (2004). Calcium oxalate deposits in leaves of Corchorus olitotius as related to accumulation of toxic metals. Russ J Plant Physiol, 51(2): 281–285

    CAS  Google Scholar 

  • Mazen A M A, Zhang D Z, Franceschi V R (2004). Calcium oxalate formation in Lemna minor: physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytol, 161(2): 435–448

    CAS  Google Scholar 

  • McConn M M, Nakata PA (2002). Calcium oxalate crystal morphology mutants from Medicago truncatula. Planta, 215(3): 380–386

    PubMed  CAS  Google Scholar 

  • McConn M M, Nakata PA (2004). Oxalate reduces calcium availability in the pads of the prickly pear cactus through formation of calcium oxalate crystals. J Agric Food Chem, 52(5): 1371–1374

    PubMed  CAS  Google Scholar 

  • McNair J B (1932). The interrelation between substances in plants: essential oils and resins, cyanogen and oxalate. Am J Bot, 19(3): 255–271

    CAS  Google Scholar 

  • Melino V J, Soole K L, Ford C M (2009). Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol, 9(1): 145

    PubMed  PubMed Central  Google Scholar 

  • Molano-Flores B (2001). Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann Bot (Lond), 88(3): 387–391

    CAS  Google Scholar 

  • Monje P V, Baran E J (2002). Characterization of calcium oxalates generated as biominerals in cacti. Plant Physiol, 128(2): 707–713

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moreau A G, Savage G P (2009). Oxalate content of purslane leaves and the effect of combining them with yoghurt or coconut products. J Food Compost Anal, 22(4): 303–306

    CAS  Google Scholar 

  • Morris J, Nakata P A, McConn M, Brock A, Hirschi K D (2007). Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate. Plant Mol Biol, 64(5): 613–618

    PubMed  CAS  Google Scholar 

  • Morrow A C, Dute R R (2002). Crystals associated with the intertracheid pit membrane of the woody fern Botrychium multifidum. Am Fern J, 92(1): 10–19

    Google Scholar 

  • Nakata P A (2003). Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci, 164(6): 901–909

    CAS  Google Scholar 

  • Nakata PA (2012). Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula. Plant Sci, 185–186(0): 246–249

    PubMed  Google Scholar 

  • Nakata P A, Kostman T A, Franceschi V R (2003). Calreticulin is enriched in the crystal idioblasts of Pistia stratiotes. Plant Physiol Biochem, 41(5): 425–430

    CAS  Google Scholar 

  • Nakata P A, McConn M (2002). Sequential subtractive approach facilitates identification of differentially expressed genes. Plant Physiol Biochem, 40(4): 307–312

    CAS  Google Scholar 

  • Nakata P A, McConn M M (2000). Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation. Plant Physiol, 124(3): 1097–1104

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakata PA, McConn MM (2003a). Calcium oxalate crystal formation is not essential for growth of Medicago truncatula. Plant Physiol Biochem, 41(4): 325–329

    CAS  Google Scholar 

  • Nakata P A, McConn M M (2003b). Influence of the calcium oxalate defective 4 (cod4) mutation on the growth, oxalate content, and calcium content of Medicago truncatula. Plant Sci, 164(4): 617–621

    CAS  Google Scholar 

  • Nakata P A, McConn M M (2006). A genetic mutation that reduces calcium oxalate content increases calcium availability in Medicago truncatula. Funct Plant Biol, 33(7): 703–706

    CAS  Google Scholar 

  • Nakata PA, McConn M M (2007a). Calcium oxalate content affects the nutritional availability of calcium from Medicago truncatula leaves. Plant Sci, 172(5): 958–961

    CAS  Google Scholar 

  • Nakata PA, McConn M M (2007b). Genetic evidence for differences in the pathways of druse and prismatic calcium oxalate crystal formation in Medicago truncatula. Funct Plant Biol, 34(4): 332–338

    CAS  Google Scholar 

  • Nakata P A, McConn M M (2007c). Isolated Medicago truncatula mutants with increased calcium oxalate crystal accumulation have decreased ascorbic acid levels. Plant Physiol Biochem, 45(3–4): 216–220

    PubMed  CAS  Google Scholar 

  • Nordin B E C, Hodgkinson A, Peacock M, Robertson W G (1979). Urinary tract calculi. In: Nephrology (Hamburger J, Crosnier J, Grunfeld J P, Eds). Wiley: New York and Paris, 1091

    Google Scholar 

  • Nuss R F, Loewus F A (1978). Further studies on oxalic acid biosynthesis in oxalate-accumulating plants. Plant Physiol, 61(4): 590–592

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y Y, Kaufman M J, Douglas E P, Gower L B (2007). Bone structure and formation: A new perspective. Mater Sci Eng Rep, 58(3–5): 77–116

    Google Scholar 

  • Oscarsson K V, Savage G P (2007). Composition and availability of soluble and insoluble oxalates in raw and cooked taro (Colocasia esculenta var. Schott) leaves. Food Chem, 101(2): 559–562

    CAS  Google Scholar 

  • Park S H, Doege S J, Nakata P A, Korth K L (2009). Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties. Entomol Exp Appl, 131(2): 208–215

    CAS  Google Scholar 

  • Parsons H T, Fry S C (2012). Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. Phytochemistry, 75(0): 41–49

    PubMed  CAS  Google Scholar 

  • Parsons H T, Yasmin T, Fry S C (2011). Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem J, 440(3): 375–383

    PubMed  CAS  Google Scholar 

  • Pennisi S V, McConnell D B (2001). Inducible calcium sinks and preferential calcium allocation in leaf primordia of Dracaena sanderiana Hort. Sander ex M.T. Mast. (Dracaenaceae). HortScience, 36: 1187–1191

    CAS  Google Scholar 

  • Pennisi S V, McConnell D B, Gower L B, Kane M E, Lucansky T (2001). Intracellular calcium oxalate crystal structure in Dracaena sanderiana. New Phytol, 150(1): 111–120

    CAS  Google Scholar 

  • Proietti S, Moscatello S, Famiani F, Battistelli A (2009). Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiol Biochem, 47(8): 717–723

    PubMed  CAS  Google Scholar 

  • Prychid C J, Jabaily R S, Rudall P J (2008). Cellular ultrastructure and crystal development in Amorphophallus (Araceae). Ann Bot (Lond), 101(7): 983–995

    Google Scholar 

  • Prychid C J, Rudall P J (1999). Calcium oxalate crystals in monocotyledons: A review of their structure and systematics. Ann Bot (Lond), 84(6): 725–739

    CAS  Google Scholar 

  • Rahman M M, Ishii Y, Niimi M, Kawamura O (2010). Effect of application form of nitrogen on oxalate accumulation and mineral uptake by napiergrass (Pennisetum purpureum). Grassland Sci, 56(3): 141–144

    CAS  Google Scholar 

  • Rinallo C, Modi G (2002). Content of oxalate in Actinidia deliciosa plants grown in nutrient solutions with different nitrogen forms. Biol Plant, 45(1): 137–139

    CAS  Google Scholar 

  • Ritter M M C, Savage G P (2007). Soluble and insoluble oxalate content of nuts. J Food Compost Anal, 20(3–4): 169–174

    CAS  Google Scholar 

  • Ruiz N, Ward D, Saltz S (2002a). Calcium oxalate crystals in leaves of Pancratium sickenbergeri: constitutive or induced defense? Funct Ecol, 16(1): 99–105

    Google Scholar 

  • Ruiz N, Ward D, Saltz S (2002b). Responses of Pancratium sickenbergeri to simulated bulb herbivory: combining defence and tolerance strategies. J Ecol, 90(3): 472–479

    Google Scholar 

  • Ryall R L, Stapleton A M F (1995) Urinary macromolecules in calcium oxalate stone and crystal matrix: good, bad, or indifferent? In: Calcium oxalate in biological systems (Kahn S R, Ed.). CRC Press, Inc.: Boca Raton, 265–290

    Google Scholar 

  • Ryan P R, Delhaize E, Jones D L (2001). Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol, 52(1): 527–560

    PubMed  CAS  Google Scholar 

  • Saito K, Ohmoto J, Kuriha N (1997). Incorporation of 18O into oxalic, Lthreonic and L-tartaric acids during cleavage of L-ascorbic and 5-keto-D-gluconic acids in plants. Phytochemistry, 44(5): 805–809

    CAS  Google Scholar 

  • Saltz S, Ward D (2000). Responding to a three-pronged attack: desert lilies subject to herbivory by dorcas gazelles. Plant Ecol, 148(2): 127–138

    Google Scholar 

  • Savage G P, Mårtensson L, Sedcole J R (2009). Composition of oxalates in baked taro (Colocasia esculenta var. Schott) leaves cooked alone or with additions of cows milk or coconut milk. J Food Compost Anal, 22(1): 83–86

    CAS  Google Scholar 

  • Savage G P, Vanhanen L, Mason S M, Ross A B (2000). Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods. J Food Compost Anal, 13(3): 201–206

    CAS  Google Scholar 

  • Siener R, Hönow R, Seidler A, Voss S, Hesse A (2006a). Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem, 98(2): 220–224

    CAS  Google Scholar 

  • Siener R, Hönow R, Voss S, Seidler A, Hesse A (2006b). Oxalate content of cereals and cereal products. J Agric Food Chem, 54(8): 3008–3011

    PubMed  CAS  Google Scholar 

  • Smith K T, Shortle W C, Connolly J H, Minocha R, Jellison J (2009). Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce. Environ Exp Bot, 67(1): 277–283

    CAS  Google Scholar 

  • Sugiyama N, Okutani I (1996). Relationship between nitrate reduction and oxalate synthesis in spinach leaves. J Plant Physiol, 149(1–2): 14–18

    CAS  Google Scholar 

  • Taylor G J (1991). Current views of the aluminum stress response; the physiological basis of tolerance. Curr Top Plant Biochem Physiol, 10: 57–93

    CAS  Google Scholar 

  • Thongboonkerd V, Semangoen T, Chutipongtanate S (2006). Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta, 367(1–2): 120–131

    PubMed  CAS  Google Scholar 

  • Thurston E L (1976). Morphology, fine structure and ontogeny of the stinging emergence of Tragia ramosa and T. saxicola (Euphorbiaceae). Am J Bot, 63(6): 710–718

    Google Scholar 

  • Tillman-Sutela E, Kauppi A (1999). Calcium oxalate crystals in the mature seeds of Norway spruce, Picea abies (L.) Karst. Trees (Berl), 13(3): 131–137

    Google Scholar 

  • Volk G M, Lynch-Holm V J, Kostman T A, Goss L J, Franceschi V R (2002). The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol, 4(1): 34–45

    CAS  Google Scholar 

  • Wagner G, Loewus F (1973). The biosynthesis of (+)-tartaric acid in Pelargonium crispum. Plant Physiol, 52(6): 651–654

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ward D, Spiegel M, Saltz S (1997). Gazelle herbivory and interpopulation differences in calcium oxalate content of leaves of a desert lilly. J Chem Ecol, 23(2): 333–346

    CAS  Google Scholar 

  • Weaver C M, Martin B R, Ebner J S, Krueger C A (1987). Oxalic acid decreases calcium absorption in rats. J Nutr, 117(11): 1903–1906

    PubMed  CAS  Google Scholar 

  • Webb M A (1999). Cell-mediated crystallization of calcium oxalate in plants. Plant Cell, 11(4): 751–761

    PubMed  CAS  PubMed Central  Google Scholar 

  • Webb M A, Arnott H J (1981). An ultrastructural study of druse crystals in okra cotyledons. Scan Electron Microsc, 3: 285–292

    Google Scholar 

  • Webb M A, Arnott H J (1983). Inside plant crystals: a study of the noncrystalline core in druses of Vitis vinifera endosperm. Scan Electron Microsc, IV: 1759–1770

    Google Scholar 

  • Webb M A, Cavaletto J M, Carpita N C, Lopez L E, Arnott H J (1995). The intravacuolar organic matrix associated with calcium oxalate crystals in leaves of Vitis. Plant J, 7(4): 633–648

    CAS  Google Scholar 

  • Weiner S, Addadi L (1991). Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci, 16(7): 252–256

    PubMed  CAS  Google Scholar 

  • Xu HW, Ji X M, He Z H, ShiW P, Zhu G H, Niu J K, Li B S, Peng X X (2006). Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves. J Exp Bot, 57(9): 1899–1908

    PubMed  CAS  Google Scholar 

  • Yang J C, Loewus F A (1975). Metabolic conversion of L-ascorbic acid in oxalate-accumulating plants. Plant Physiol, 56(2): 283–285

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Y Y, Jung J Y, Song W Y, Suh H S, Lee Y (2000). Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol, 124(3): 1019–1026

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yu L, Jiang J, Zhang C, Jiang L, Ye N, Lu Y, Yang G, Liu E, Peng C, He Z, Peng X (2010). Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J Exp Bot, 61(6): 1625–1634

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zindler-Frank E (1975). On the formation of the pattern of crystal idioblasts in Canavalia ensiformis D.C.: VII. Calcium and oxalate content of the leaves in dependence of calcium nutrition. Z Pflanzenphysiol, 77: 80–85

    CAS  Google Scholar 

  • Zindler-Frank E (1976). Oxalate biosynthesis in relation to photosynthetic pathways and plant productivity: a survey. Z Pflanzenphysiol, 80: 1–13

    CAS  Google Scholar 

  • Zindler-Frank E (1987) Calcium oxalate in legumes. In: Advances in Legume Systematics (Stirton E, Ed.)Royal Botanic Gardens: Kew, UK, 279–316

    Google Scholar 

  • Zindler-Frank E (1991). Calcium oxalate crystal formation and growth in two legume species as altered by strontium. Bot Acta, 104: 229–232

    CAS  Google Scholar 

  • Zindler-Frank E, Honow R, Hesse A (2001). Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation. J Plant Physiol, 158(2): 139–144

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Nakata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakata, P.A. Plant calcium oxalate crystal formation, function, and its impact on human health. Front. Biol. 7, 254–266 (2012). https://doi.org/10.1007/s11515-012-1224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1224-0

Keywords

Navigation