Skip to main content
Log in

Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution

  • Review
  • Published:
Frontiers in Biology

Abstract

Abiotic stresses such as drought, cold, and high salinity are among the most adverse factors that affect plant growth and yield in the field. MicroRNAs are small RNA molecules that regulate gene expression in a sequence-specific manner and play an important role in plant stress response. Identifying abiotic stress-associated microRNAs and understanding their function will help develop new strategies for improvement of plant stress tolerance. Here we highlight recent advances in our understanding of abiotic stress-associated miRNAs in various plants, with focus on their discovery, expression analysis, and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 15(1): 78–91

    Article  PubMed  CAS  Google Scholar 

  • Addo-Quaye C, Eshoo TW, Bartel D P, Axtell M J (2008). Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol, 18(10): 758–762

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2): 207–221

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson A M, Sung G H, Spatafora J W, Carrington J C (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet, 36(12): 1282–1290

    Article  PubMed  CAS  Google Scholar 

  • Ambros V, Bartel B, Bartel D P, Burge C B, Carrington J C, Chen X, Dreyfuss G, Eddy S R, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003). A uniform system for microRNA annotation. RNA, 9(3): 277–279

    Article  PubMed  CAS  Google Scholar 

  • Audic S, Claverie J M (1997). The significance of digital gene expression profiles. Genome Res, 7(10): 986–995

    PubMed  CAS  Google Scholar 

  • Axtell M J, Bowman J L (2008). Evolution of plant microRNAs and their targets. Trends Plant Sci, 13(7): 343–349

    Article  PubMed  CAS  Google Scholar 

  • Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell, 19(6): 1750–1769

    Article  PubMed  CAS  Google Scholar 

  • Barrera-Figueroa B E, Gao L, Diop N N, Wu Z, Ehlers J D, Roberts PA, Close T J, Zhu J K, Liu R (2011). Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol, 11(1): 127

    Article  PubMed  CAS  Google Scholar 

  • Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281–297

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 101(31): 11511–11516

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123(7): 1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Boyer J S (1982). Plant productivity and environment. Science, 218(4571): 443–448

    Article  PubMed  CAS  Google Scholar 

  • Bureau T E, Wessler S R (1992). Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell, 4(10): 1283–1294

    PubMed  CAS  Google Scholar 

  • Chen C, Tan R, Wong L, Fekete R, Halsey J (2011). Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol, 687: 113–134

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2005). MicroRNA biogenesis and function in plants. FEBS Lett, 579(26): 5923–5931

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J K (2009). RNA-directed DNA methylation and demethylation in plants. Sci China C Life Sci, 52(4): 331–343

    Article  PubMed  CAS  Google Scholar 

  • Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18(2): 412–421

    Article  PubMed  CAS  Google Scholar 

  • Cuperus J T, Fahlgren N, Carrington J C (2011). Evolution and functional diversification of MIRNA genes. Plant Cell, 23(2): 431–442

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Zhuang Z, Zhao P X (2011). Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform, 12(2): 115–121

    Article  PubMed  CAS  Google Scholar 

  • Dalmay T (2006). Short RNAs in environmental adaptation. Proc Biol Sci, 273(1594): 1579–1585

    Article  PubMed  CAS  Google Scholar 

  • Devers E A, Branscheid A, May P, Krajinski F (2011). Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in Arbuscular mycorrhizal symbiosis. Plant Physiol, 156(4): 1990–2010

    Article  PubMed  CAS  Google Scholar 

  • Dezulian T, Remmert M, Palatnik J F, Weigel D, Huson D H (2006). Identification of plant microRNA homologs. Bioinformatics, 22(3): 359–360

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011). Microarray-based analysis of cadmiumresponsive microRNAs in rice (Oryza sativa). J Exp Bot, 62(10): 3563–3573

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2(2): e219

    Article  PubMed  Google Scholar 

  • Fahlgren N, Jogdeo S, Kasschau K D, Sullivan C M, Chapman E J, Laubinger S, Smith L M, Dasenko M, Givan S A, Weigel D, Carrington J C (2010). MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell, 22(4): 1074–1089

    Article  PubMed  CAS  Google Scholar 

  • Felippes F F, Schneeberger K, Dezulian T, Huson D H, Weigel D (2008). Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA, 14(12): 2455–2459

    Article  PubMed  Google Scholar 

  • Ge Y, Li Y, Zhu YM, Bai X, Lv D K, Guo D, Ji W, Cai H (2010). Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol, 10(1): 153

    Article  PubMed  Google Scholar 

  • German M A, Pillay M, Jeong D H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis L A, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers B C, Green P J (2008). Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol, 26(8): 941–946

    Article  PubMed  CAS  Google Scholar 

  • Gou J Y, Felippes F F, Liu C J, Weigel D, Wang J W (2011). Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell, 23(4): 1512–1522

    Article  PubMed  CAS  Google Scholar 

  • Jacob F, Monod J (1961). Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 3(3): 318–356

    Article  PubMed  CAS  Google Scholar 

  • Jia X, Wang W X, Ren L, Chen Q J, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009). Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol, 71(1–2): 51–59

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Feschotte C, Zhang X, Wessler S R (2004). Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol, 7(2): 115–119

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Vacic V, Girke T, Lonardi S, Zhu J K (2008). Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol, 9(1): 6

    Article  PubMed  Google Scholar 

  • Johnson C, Bowman L, Adai A T, Vance V, Sundaresan V (2007). CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res, 35(Database issue): D829–D833

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel D P (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 14(6): 787–799

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel D P, Bartel B (2006). MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol, 57(1): 19–53

    Article  PubMed  CAS  Google Scholar 

  • Joung J G, Fei Z (2009). Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model. Bioinformatics, 25(3): 387–393

    Article  PubMed  CAS  Google Scholar 

  • Kantar M, Lucas S J, Budak H (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 233(3): 471–484

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007). A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev, 21(23): 3123–3134

    Article  PubMed  CAS  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25

    Article  PubMed  Google Scholar 

  • Lau N C, Lim L P, Weinstein E G, Bartel D P (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543): 858–862

    Article  PubMed  CAS  Google Scholar 

  • Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009). Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell, 21(9): 2780–2796

    Article  PubMed  Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011a). Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot, 62(11): 3765–3779

    Article  PubMed  CAS  Google Scholar 

  • Li R, Yu C, Li Y, Lam T W, Yiu S M, Kristiansen K, Wang J (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15): 1966–1967

    Article  PubMed  CAS  Google Scholar 

  • Li W X, Oono Y, Zhu J, He X J, Wu J M, Iida K, Lu X Y, Cui X, Jin H, Zhu J K (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell, 20(8): 2238–2251

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li C, Xia J, Jin Y (2011b). Domestication of transposable elements into microRNA genes in plants. PLoS ONE, 6(5): e19212

    Article  PubMed  CAS  Google Scholar 

  • Li Y F, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell M J, Zhang W, Sunkar R (2010). Transcriptome-wide identification of microRNA targets in rice. Plant J, 62(5): 742–759

    Article  PubMed  CAS  Google Scholar 

  • Lindow M, Krogh A (2005). Computational evidence for hundreds of non-conserved plant microRNAs. BMC Genomics, 6(1): 119

    Article  PubMed  Google Scholar 

  • Liu B, Liu L, Tsykin A, Goodall G J, Green J E, Zhu M, Kim C H, Li J (2010). Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics, 26(24): 3105–3111

    Article  PubMed  CAS  Google Scholar 

  • Liu H H, Tian X, Li Y J, Wu C A, Zheng C C (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14(5): 836–843

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Franco-Zorrilla J M, Solano R, Barajas D (2011). Target validation of plant microRNAs. Methods Mol Biol, 732: 187–208

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Kasschau K D, Rector M A, Carrington J C (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14(7): 1605–1619

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Jeong D H, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher S R, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers B C, Green P J (2008a). Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA, 105(12): 4951–4956

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Kulkarni K, Souret F F, MuthuValliappan R, Tej S S, Poethig R S, Henderson I R, Jacobsen S E, Wang W, Green P J, Meyers B C (2006). MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res, 16(10): 1276–1288

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Meyers B C, Green P J (2007). Construction of small RNA cDNA libraries for deep sequencing. Methods, 43(2): 110–117

    Article  PubMed  Google Scholar 

  • Lu C, Tej S S, Luo S J, Haudenschild C D, Meyers B C, Green P J (2005a). Elucidation of the small RNA component of the transcriptome. Science, 309(5740): 1567–1569

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun Y H, Chiang V L (2008b). Stress-responsive microRNAs in Populus. Plant J, 55(1): 131–151

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun Y H, Shi R, Clark C, Li L, Chiang V L (2005b). Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 17(8): 2186–2203

    Article  PubMed  CAS  Google Scholar 

  • McCormick K P, Willmann M R, Meyers B C (2011). Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence, 2(1): 2

    Article  PubMed  CAS  Google Scholar 

  • Megraw M, Baev V, Rusinov V, Jensen S T, Kalantidis K, Hatzigeorgiou A G (2006). MicroRNA promoter element discovery in Arabidopsis. RNA, 12(9): 1612–1619

    Article  PubMed  CAS  Google Scholar 

  • Mendes N D, Freitas A T, Sagot M F (2009). Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res, 37(8): 2419–2433

    Article  PubMed  CAS  Google Scholar 

  • Meng Y, Shao C, Chen M (2011). Toward microRNA-mediated gene regulatory networks in plants. Brief Bioinform, 12(6): 645–659

    Article  PubMed  CAS  Google Scholar 

  • Meyers B C, Axtell M J, Bartel B, Bartel D P, Baulcombe D, Bowman J L, Cao X, Carrington J C, Chen X, Green P J, Griffiths-Jones S, Jacobsen S E, Mallory A C, Martienssen R A, Poethig R S, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu J K (2008). Criteria for annotation of plant microRNAs. Plant Cell, 20(12): 3186–3190

    Article  PubMed  CAS  Google Scholar 

  • Nobuta K, Venu R C, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W Z, Pillay M, Green P J, Wang G L, Meyers B C (2007). An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol, 25(4): 473–477

    Article  PubMed  CAS  Google Scholar 

  • Pak J, Fire A (2007). Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science, 315(5809): 241–244

    Article  PubMed  CAS  Google Scholar 

  • Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010). Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J, 62(6): 960–976

    PubMed  CAS  Google Scholar 

  • Piriyapongsa J, Jordan I K (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 14(5): 814–821

    Article  PubMed  CAS  Google Scholar 

  • Pradervand S, Weber J, Lemoine F, Consales F, Paillusson A, Dupasquier M, Thomas J, Richter H, Kaessmann H, Beaudoing E, Hagenbüchle O, Harshman K (2010). Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques, 48(3): 219–222

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel D P (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 20(24): 3407–3425

    Article  PubMed  CAS  Google Scholar 

  • Reinhart B J, Bartel D P (2002). Small RNAs correspond to centromere heterochromatic repeats. Science, 297(5588): 1831

    Article  PubMed  CAS  Google Scholar 

  • Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P (2002). Prediction of plant microRNA targets. Cell, 110(4): 513–520

    Article  PubMed  CAS  Google Scholar 

  • Robinson M D, McCarthy D J, Smyth G K (2010). EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140

    Article  PubMed  CAS  Google Scholar 

  • Ron M, Alandete Saez M, Eshed Williams L, Fletcher J C, McCormick S (2010). Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev, 24(10): 1010–1021

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 31(3): 279–292

    Article  PubMed  CAS  Google Scholar 

  • Song Q X, Liu Y F, Hu X Y, Zhang W K, Ma B, Chen S Y, Zhang J S (2011). Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol, 11(1): 5

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Girke T, Jain P K, Zhu J K (2005). Cloning and characterization of microRNAs from rice. Plant Cell, 17(5): 1397–1411

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol, 8(1): 37

    Article  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 18(8): 2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhou X F, Zheng Y, Zhang W X, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 8(1): 25

    Article  PubMed  Google Scholar 

  • Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16(8): 2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Szittya G, Moxon S, Santos D M, Jing R, Fevereiro M P, Moulton V, Dalmay T (2008). High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics, 9(1): 593

    Article  PubMed  Google Scholar 

  • Valdés-López O, Yang S S, Aparicio-Fabre R, Graham P H, Reyes J L, Vance C P, Hernández G (2010). MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol, 187(3): 805–818

    Article  PubMed  Google Scholar 

  • Vaucheret H (2006). Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev, 20(7): 759–771

    Article  PubMed  CAS  Google Scholar 

  • Vazquez F, Legrand S, Windels D (2010). The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci, 15(6): 337–345

    Article  PubMed  CAS  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous transacting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 16(1): 69–79

    Article  PubMed  CAS  Google Scholar 

  • Vigneault F, Sismour A M, Church G M (2008). Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. Nat Methods, 5(9): 777–779

    Article  PubMed  CAS  Google Scholar 

  • Wang X J, Reyes J L, Chua N H, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 5(9): R65

    Article  PubMed  Google Scholar 

  • Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu Y Q, Vogel J, Jia J, Qi Y, Mao L (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics, 9(4): 499–511

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009). Rice MicroRNA effector complexes and targets. Plant Cell, 21(11): 3421–3435

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010). DNA methylation mediated by a microRNA pathway. Mol Cell, 38(3): 465–475

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol, 138(4): 2145–2154

    Article  PubMed  CAS  Google Scholar 

  • Xuan P, Guo M, Liu X, Huang Y, Li W, Huang Y (2011). PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics, 27(10): 1368–1376

    Article  PubMed  CAS  Google Scholar 

  • Zhang B H, Pan X P, Cannon C H, Cobb G P, Anderson T A (2006). Conservation and divergence of plant microRNA genes. Plant J, 46(2): 243–259

    Article  PubMed  CAS  Google Scholar 

  • Zhang J Y, Xu Y Y, Huan Q, Chong K (2009a). Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics, 10(1): 449

    Article  PubMed  Google Scholar 

  • Zhang L F, Chia JM, Kumari S, Stein J C, Liu Z J, Narechania A, Maher C A, Guill K, McMullen M D, Ware D (2009b). A genome-wide characterization of microRNA genes in maize. PLoS Genet, 5(11): e1000716

    Article  PubMed  Google Scholar 

  • Zhao M, Ding H, Zhu J K, Zhang F, Li W X (2011). Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol, 190(4): 906–915

    Article  PubMed  CAS  Google Scholar 

  • Zhu J K (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53(1): 247–273

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res, 18(9): 1456–1465

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renyi Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrera-Figueroa, B.E., Wu, Z. & Liu, R. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution. Front. Biol. 8, 189–197 (2013). https://doi.org/10.1007/s11515-012-1210-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1210-6

Keywords

Navigation