Skip to main content
Log in

3C-based methods to detect long-range chromatin interactions

  • Review
  • Published:
Frontiers in Biology

Abstract

Transcriptional regulatory regions are often located several thousand bases from the gene that they control. To function, the chromatin strand forms loops to juxtapose distal regions with the promoter. These long-range chromatin interactions have profound influences on the regulation of gene expression and mapping these interactions is currently a subject of intensive investigation. Chromosome conformation capture (3C) technology and its derivatives have been widely used to detect chromatin interactions and greatly contributed to understanding of the relationship between genome organization and genome function. Here we review these 3C-based methods for the study of long-range chromatin interactions and recent exciting findings obtained by using these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  • Barski A, Cuddapah S, Cui K R, Roh T Y, Schones D E, Wang Z B, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4): 823–837

    Article  CAS  PubMed  Google Scholar 

  • Boyle A P, Davis S, Shulha H P, Meltzer P, Margulies E H, Weng Z, Furey T S, Crawford G E (2008). High-resolution mapping and characterization of open chromatin across the genome. Cell, 132(2): 311–322

    Article  CAS  PubMed  Google Scholar 

  • Cai S T, Lee C C, Kohwi-Shigematsu T (2006). SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet, 38(11): 1278–1288

    Article  CAS  PubMed  Google Scholar 

  • Carroll J S, Liu X S, Brodsky A S, Li W, Meyer C A, Szary A J, Eeckhoute J, Shao W L, Hestermann E V, Geistlinger T R, Fox E A, Silver P A, Brown M (2005). Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell, 122(1): 33–43

    Article  CAS  PubMed  Google Scholar 

  • Carter D, Chakalova L, Osborne C S, Dai Y F, Fraser P (2002). Longrange chromatin regulatory interactions in vivo. Nat Genet, 32(4):623–626

    Article  CAS  PubMed  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002). Capturing chromosome conformation. Science, 295(5558): 1306–1311

    Article  CAS  PubMed  Google Scholar 

  • Dostie J, Dekker J (2006). Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc, 2, 988–1002

    Article  Google Scholar 

  • Dostie J, Richmond T A, Arnaout R A, Selzer R R, Lee WL, Honan T A, Rubio E D, Krumm A, Lamb J, Nusbaum C, Green R D, Dekker J (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 16(10): 1299–1309

    Article  CAS  PubMed  Google Scholar 

  • Duan Z, Andronescu M, Schutz K, McIlwain S, Kim Y J, Lee C, Shendure J, Fields S, Blau C A, Noble W S (2010). A threedimensional model of the yeast genome. Nature, 465(7296): 363–367

    Article  CAS  PubMed  Google Scholar 

  • ENCODE project consortium (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306(5696): 636–640

    Article  Google Scholar 

  • Fullwood M J, Liu M H, Pan Y F, Liu J, Xu H, Mohamed Y B, Orlov Y L, Velkov S, Ho A, Mei P H, Chew E G, Huang P Y, Welboren W J, Han Y, Ooi H S, Ariyaratne P N, Vega V B, Luo Y, Tan P Y, Choy P Y, Wansa K D, Zhao B, Lim K S, Leow S C, Yow J S, Joseph R, Li H, Desai K V, Thomsen J S, Lee Y K, Karuturi R K, Herve T, Bourque G, Stunnenberg H G, Ruan X, Cacheux-Rataboul V, Sung W K, Liu E T, Wei C L, Cheung E, Ruan Y (2009). An oestrogen-receptoralpha-bound human chromatin interactome. Nature, 462(7269): 58–64

    Article  CAS  PubMed  Google Scholar 

  • Göndör A, Ohlsson R (2009). Chromosome crosstalk in three dimensions. Nature, 461(7261): 212–217

    Article  PubMed  Google Scholar 

  • Horike S, Cai S T, Miyano M, Cheng J F, Kohwi-Shigematsu T (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet, 37(1): 31–40

    CAS  PubMed  Google Scholar 

  • Johnson D S, Mortazavi A, Myers R M, Wold B (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830): 1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Kim S I, Bresnick E H, Bultman S J (2009). BRG1 directly regulates nucleosome structure and chromatin looping of the alpha globin locus to activate transcription. Nucleic Acids Res, 37(18): 6019–6027

    Article  CAS  PubMed  Google Scholar 

  • Lajoie B R, van Berkum N L, Sanyal A, Dekker J (2009). My5C: web tools for chromosome conformation capture studies. Nat Methods, 6 (10): 690–691

    Article  CAS  PubMed  Google Scholar 

  • Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 8(2): 104–115

    Article  PubMed  Google Scholar 

  • Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950): 289–293

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2007). Beyond the sequence: cellular organization of genome function. Cell, 128(4): 787–800

    Article  CAS  PubMed  Google Scholar 

  • Murrell A, Heeson S, Reik W (2004). Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet, 36(8): 889–893

    Article  CAS  PubMed  Google Scholar 

  • Palstra R J, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003). The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet, 35(2): 190–194

    Article  CAS  PubMed  Google Scholar 

  • Schones D E, Cui K, Cuddapah S, Roh T Y, Barski A, Wang Z, Wei G, Zhao K (2008). Dynamic regulation of nucleosome positioning in the human genome. Cell, 132(5): 887–898

    Article  CAS  PubMed  Google Scholar 

  • Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, deWit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354

    Article  CAS  PubMed  Google Scholar 

  • Spilianakis C G, Flavell R A (2004). Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol, 5 (10): 1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Spilianakis C G, Lalioti M D, Town T, Lee G R, Flavell R A (2005). Interchromosomal associations between alternatively expressed loci. Nature, 435(7042): 637–645

    Article  CAS  PubMed  Google Scholar 

  • Splinter E, Heath H, Kooren J, Palstra R J, Klous P, Grosveld F, Galjart N, de Laat W (2006). CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev, 20(17): 2349–2354

    Article  CAS  PubMed  Google Scholar 

  • Tiwari V K, Cope L, McGarvey K M, Ohm J E, Baylin S B (2008). A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res, 18(7): 1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Tolhuis B, Palstra R J, Splinter E, Grosveld F, de Laat W (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell, 10(6): 1453–1465

    Article  CAS  PubMed  Google Scholar 

  • Vakoc C R, Letting D L, Gheldof N, Sawado T, Bender M A, Groudine M, Weiss MJ, Dekker J, Blobel G A (2005). Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell, 17(3): 453–462

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Schones D E, Zhao K (2009). Characterization of human epigenomes. Curr Opin Genet Dev, 19(2): 127–134

    Article  CAS  PubMed  Google Scholar 

  • Würtele H, Chartrand P (2006). Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res, 14(5): 477–495

    Article  PubMed  Google Scholar 

  • Xu N, Tsai C L, Lee J T (2006). Transient homologous chromosome pairing marks the onset of X inactivation. Science, 311(5764): 1149–1152

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu K S, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006). Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet, 38(11): 1341–1347

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, G., Zhao, K. 3C-based methods to detect long-range chromatin interactions. Front. Biol. 6, 76–81 (2011). https://doi.org/10.1007/s11515-011-0980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-0980-6

Keywords

Navigation