Skip to main content
Log in

A complete classification of homogeneous plane continua

  • Published:
Acta Mathematica

Abstract

We show that the only compact and connected subsets (i.e. continua) X of the plane \({\mathbb{R}^2}\) which contain more than one point and are homogeneous, in the sense that the group of homeomorphisms of X acts transitively on X, are, up to homeomorphism, the circle \({\mathbb{S}^1}\), the pseudo-arc, and the circle of pseudo-arcs. These latter two spaces are fractal-like objects which do not contain any arcs. It follows that any compact and homogeneous space in the plane has the form X × Z, where X is either a point or one of the three homogeneous continua above, and Z is either a finite set or the Cantor set.

The main technical result in this paper is a new characterization of the pseudo-arc. Following Lelek, we say that a continuum X has span zero provided for every continuum C and every pair of maps \({f,g\colon C \to X}\) such that \({f(C) \subset g(C)}\) there exists \({c_0 \in C}\) so that f(c 0) = g(c 0). We show that a continuum is homeomorphic to the pseudo-arc if and only if it is hereditarily indecomposable (i.e., every subcontinuum is indecomposable) and has span zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarts, J.M., Oversteegen, L.G.: The product structure of homogeneous spaces. Indag. Math. 1, 1–5 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bing, R.H.: A homogeneous indecomposable plane continuum. Duke Math. J. 15, 729–742 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bing, R.H.: Concerning hereditarily indecomposable continua. Pacific J. Math. 1, 43–51 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bing, R.H.: A simple closed curve is the only homogeneous bounded plane continuum that contains an arc. Canad. J. Math. 12, 209–230 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bing, R.H., Jones, F.B.: Another homogeneous plane continuum. Trans. Amer. Math. Soc. 90, 171–192 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, H.J.: Some results concerning homogeneous plane continua. Duke Math. J. 18, 467–474 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cook, H., Ingram, W. T. & Lelek, A., A list of problems known as Houston problem book, in Continua (Cincinnati, OH, 1994), Lecture Notes in Pure and Appl. Math., 170, pp. 365–398. Marcel Dekker, New York, 1995

  8. Davis, J.F.: The equivalence of zero span and zero semispan. Proc. Amer. Math. Soc. 90, 133–138 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fearnley, L.: Characterizations of the continuous images of the pseudo-arc. Trans. Amer. Math. Soc. 111, 380–399 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fearnley, L.: The pseudo-circle is not homogeneous. Bull. Amer. Math. Soc. 75, 554–558 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hagopian, C.L.: Homogeneous plane continua. Houston J. Math. 1, 35–41 (1975)

    MathSciNet  MATH  Google Scholar 

  12. Hagopian, C.L.: Indecomposable homogeneous plane continua are hereditarily indecomposable. Trans. Amer. Math. Soc. 224, 339–350 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoehn, L.C.: A non-chainable plane continuum with span zero. Fund. Math. 211, 149–174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoehn, L. C. & Oversteegen, L.G., A complete classification of hereditarily equivalent plane continua. In preparation

  15. Jones, F.B.: Certain homogeneous unicoherent indecomposable continua. Proc. Amer. Math. Soc. 2, 855–859 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jones, F.B.: On a certain type of homogeneous plane continuum. Proc. Amer. Math. Soc. 6, 735–740 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jones, F.B.: On homogeneity. in Summary of Lectures and Seminars. Summer Institute on Set-Theoretic Topology (Madison, WI), pp. 68–70. Amer. Math. Soc, Providence, RI (1955)

  18. Jones, F.B.: Homogeneous plane continua. in Proceedings of the Auburn Topology Conference (Auburn. AL, 1969), pp. 46–56. Auburn University, Auburn, AL (1969)

  19. Jones, F. B., Homogeneous continua, in Proceedings of the International Symposium on Topology and its Applications (Budva, 1972), pp. 129–131. Savez Društava Mat. Fiz. i Astronom., Belgrade, 1973

  20. Jones, F.B.: Use of a new technique in homogeneous continua. Houston J. Math. 1, 57–61 (1975)

    MathSciNet  MATH  Google Scholar 

  21. Kennedy, J.A., Yorke, J.A.: Pseudocircles in dynamical systems. Trans. Amer. Math. Soc. 343, 349–366 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Knaster, B.: Un continu dont tout sous-continu est indécomposable. Fund. Math. 3, 247–286 (1922)

    MATH  Google Scholar 

  23. Knaster, B., Kuratowski, C.: Problème 2. Fund. Math. 1, 223 (1920)

    Google Scholar 

  24. Krasinkiewicz, J., Minc, P.: Mappings onto indecomposable continua. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25, 675–680 (1977)

    MathSciNet  MATH  Google Scholar 

  25. Krupski, P., Prajs, J.R.: Outlet points and homogeneous continua. Trans. Amer. Math. Soc. 318, 123–141 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuratowski, K.: Topology, vol. II. Academic Press, New York-London (1968)

    Google Scholar 

  27. Lehner, G.R.: Extending homeomorphisms on the pseudo-arc. Trans. Amer. Math. Soc. 98, 369–394 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lelek, A., On weakly chainable continua. Fund. Math., 51 (1962/1963), 271–282

  29. Lelek, A.: Disjoint mappings and the span of spaces. Fund. Math. 55, 199–214 (1964)

    MathSciNet  MATH  Google Scholar 

  30. Lelek, A.: On the surjective span and semispan of connected metric spaces. Colloq. Math. 37, 35–45 (1977)

    MathSciNet  MATH  Google Scholar 

  31. Lelek, A.: The span of mappings and spaces. Topology Proc. 4, 631–633 (1979)

    MathSciNet  MATH  Google Scholar 

  32. Lelek, A., Read, D.R.: Compositions of confluent mappings and some other classes of functions. Colloq. Math. 29, 101–112 (1974)

    MathSciNet  MATH  Google Scholar 

  33. Lewis, W.: Stable homeomorphisms of the pseudo-arc. Canad. J. Math. 31, 363–374 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lewis, W.: Homogeneous hereditarily indecomposable continua. Topology Proc. 5, 215–222 (1980)

    MathSciNet  MATH  Google Scholar 

  35. Lewis, W.: Homogeneous continua and continuous decompositions. Topology Proc. 8, 71–84 (1983)

    MathSciNet  MATH  Google Scholar 

  36. Lewis, W.: Homogeneous curves. Topology Proc. 9, 85–98 (1984)

    MathSciNet  MATH  Google Scholar 

  37. Lewis, W.: The classification of homogeneous continua. Soochow J. Math. 18, 85–121 (1992)

    MathSciNet  MATH  Google Scholar 

  38. Lewis, W., Minc, P.: Drawing the pseudo-arc. Houston J. Math. 36, 905–934 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Mazurkiewicz, S.: Sur les continus homog`enes. Fund. Math. 5, 137–146 (1924)

    Google Scholar 

  40. McLean, T.B.: Confluent images of tree-like curves are tree-like. Duke Math. J. 39, 465–473 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mislove, M.W., Rogers Jr., J.T.: Local product structures on homogeneous continua. Topology Appl. 31, 259–267 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mislove, M.W., Rogers Jr., J.T.: Addendum: "Local product structures on homogeneous continua". Topology Appl. 34, 209 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Moise, E.E.: An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua. Trans. Amer. Math. Soc. 63, 581–594 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nadler, S. B., Jr., Continuum Theory. Monographs and Textbooks in Pure and Applied Mathematics, 158. Marcel Dekker, New York, 1992.

  45. Oversteegen, L.G., Tymchatyn, E.D.: Plane strips and the span of continua. I. Houston J. Math. 8, 129–142 (1982)

    MathSciNet  MATH  Google Scholar 

  46. Oversteegen, L.G., Tymchatyn, E.D.: On span and weakly chainable continua. Fund. Math. 122, 159–174 (1984)

    MathSciNet  MATH  Google Scholar 

  47. Oversteegen, L.G., Tymchatyn, E.D.: On hereditarily indecomposable compacta. in Geometric and Algebraic Topology. Banach Center Publications, 18, pp. 407–417. PWN, Warsaw (1986).

  48. Rogers Jr., J.T.: The pseudo-circle is not homogeneous. Trans. Amer. Math. Soc. 148, 417–428 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rogers Jr., J.T.: Homogeneous, separating plane continua are decomposable. Michigan Math. J. 28, 317–322 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rogers Jr., J.T.: Homogeneous hereditarily indecomposable continua are tree-like. Houston J. Math. 8, 421–428 (1982)

    MathSciNet  MATH  Google Scholar 

  51. Rogers Jr., J.T.: Homogeneous continua. Topology Proc. 8, 213–233 (1983)

    MathSciNet  MATH  Google Scholar 

  52. Rogers Jr., J.T.: Classifying homogeneous continua. Topology Appl. 44, 341–352 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rudin, M. E., The early work of F. B. Jones, in Handbook of the History of General Topology, Vol. 1, pp. 85–96. Kluwer, Dordrecht, 1997.

  54. Sierpiński, W.: Sur une propriété topologique des ensembles dénombrables denses en soi. Fund. Math. 1, 11–16 (1920)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Logan C. Hoehn.

Additional information

Dedicated to Andrew Lelek on the occasion of his 80th birthday.

The first named author was partially supported by NSERC grant RGPIN 435518 and by the Mary Ellen Rudin Young Researcher Award.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoehn, L.C., Oversteegen, L.G. A complete classification of homogeneous plane continua. Acta Math 216, 177–216 (2016). https://doi.org/10.1007/s11511-016-0138-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-016-0138-0

2010 Math. Subj. Clasification

Keywords

Navigation