Skip to main content
Log in

The Hodge conjecture and arithmetic quotients of complex balls

  • Published:
Acta Mathematica

Abstract

Let S be a closed Shimura variety uniformized by the complex n-ball associated with a standard unitary group. The Hodge conjecture predicts that every Hodge class in \({H^{2k} (S, \mathbb{Q})}\), \({k=0,\dots, n}\), is algebraic. We show that this holds for all degrees k away from the neighborhood \({\bigl]\tfrac13n,\tfrac23n\bigr[}\) of the middle degree. We also prove the Tate conjecture for the same degrees as the Hodge conjecture and the generalized form of the Hodge conjecture in degrees away from an interval (depending on the codimension c of the subvariety) centered at the middle dimension of S. These results are derived from a general theorem that applies to all Shimura varieties associated with standard unitary groups of any signature. The proofs make use of Arthur’s endoscopic classification of automorphic representations of classical groups. As such our results rely on the stabilization of the trace formula for the (disconnected) groups \({GL (N) \rtimes \langle \theta \rangle}\) associated with base change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arancibia, N., Moeglin, C. & Renard, D., Paquets d’Arthur des groupes classiques et unitaires. Preprint, 2015. arXiv:1507.01432 [RT].

  2. Arthur J.: On local character relations. Selecta Math. 2, 501–579 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arthur, J., An introduction to the trace formula, in Harmonic Analysis, the Trace Formula, and Shimura Varieties, Clay Math. Proc., 4, pp. 1–263. Amer. Math. Soc., Providence, RI, 2005.

  4. Bergeron N.: Restriction de la cohomologie d’une variété de Shimura à à ses sous-variétés. Transform. Groups 14, 41–86 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bergeron, N. & Clozel, L., Spectre automorphe des variétés hyperboliques et applications topologiques. Astérisque, 303 (2005), 218 pp.

  6. Bergeron N., Clozel L.: Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques. Invent. Math. 192, 505–532 (2013)

    MathSciNet  Google Scholar 

  7. Bergeron, N., Millson, J. & Moeglin, C., Hodge type theorems for arithmetic manifolds associated to orthogonal groups. To appear in Int. Math. Res. Not. arXiv:1110.3049 [NT].

  8. Blasius, D. & Rogawski, J., Cohomology of congruence subgroups of SU(2,1)p and Hodge cycles on some special complex hyperbolic surfaces, in Regulators in Analysis, Geometry and Number Theory, Progr. Math., 171, pp. 1–15. Birkhäuser, Boston, MA, 2000.

  9. Borel, A. & Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Mathematical Surveys and Monographs, 67. Amer. Math. Soc., Providence, RI, 2000.

  10. Chern, S.-S., On a generalization of Kähler geometry, in Algebraic Geometry and Topology, pp. 103–121. Princeton Univ. Press, Princeton, NJ, 1957.

  11. Cossutta M.: Asymptotique des nombres de Betti des variétés arithmétiques. Duke Math. J., 150, 443–488 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deligne, P., Travaux de Shimura, in Séminaire Bourbaki (1970/71), Exp. No. 389, Lecture Notes in Mathematics, 244, pp. 123–165. Springer, Berlin–Heidelberg, 1971.

  13. Faltings G.: p-adic Hodge theory. J. Amer, Math. Soc. 1, 255–299 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Flath, D., Decomposition of representations into tensor products, in Automorphic Forms, Representations and L-Functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., 33, pp. 179–183. Amer. Math. Soc., Providence, RI, 1979.

  15. Folland, G. B., Harmonic Analysis in Phase Space. Annals of Mathematics Studies, 122. Princeton Univ. Press, Princeton, NJ, 1989.

  16. Fulton, W., Young Tableaux. London Mathematical Society Student Texts, 35. Cambridge Univ. Press, Cambridge, 1997.

  17. Fulton, W. & Harris, J., Representation Theory. Graduate Texts in Mathematics, 129. Springer, New York, 1991.

  18. Gan W.T., Takeda S.: On the regularized Siegel–Weil formula (the second term identity) and non-vanishing of theta lifts from orthogonal groups. J. Reine Angew. Math. 659, 175–244 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Gelbart, S., Examples of dual reductive pairs, in Automorphic Forms, Representations and L-Functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., 33, pp. 287–296. Amer. Math. Soc., Providence, RI, 1979.

  20. Gelbart, S., Piatetski-Shapiro, I. & Rallis, S., Explicit Constructions of Automorphic L-Functions. Lecture Notes in Mathematics, 1254. Springer, Berlin–Heidelberg, 1987.

  21. Gelbart S., Rogawski J., Soudry D.: On periods of cusp forms and algebraic cycles for U(3). Israel J. Math. 83, 213–252 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gelbart S., Rogawski J., Soudry D.: Periods of cusp forms and L-packets. C. R. Acad. Sci. Paris Sér. I Math. 317, 717–722 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Gelbart S., Rogawski J., Soudry D.: Endoscopy, theta-liftings, and period integrals for the unitary group in three variables. Ann. of Math. 145, 419–476 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ginzburg D., Jiang D., Soudry D.: Poles of L-functions and theta liftings for orthogonal groups. J. Inst. Math. Jussieu 8, 693–741 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Godement, R. & Jacquet, H., Zeta Functions of Simple Algebras. Lecture Notes in Mathematics, 260. Springer, Berlin–Heidelberg, 1972.

  26. Gong Z., Grenié L.: An inequality for local unitary theta correspondence. Ann. Fac. Sci. Toulouse Math. 20, 167–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Griffiths, P. & Harris, J., Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley-Interscience, New York, 1978.

  28. Grothendieck A.: Hodge’s general conjecture is false for trivial reasons. Topology 8, 299–303 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  29. Harris M.: L-functions of 2 × 2 unitary groups and factorization of periods of Hilbert modular forms. J. Amer. Math. Soc. 6, 637–719 (1993)

    MathSciNet  MATH  Google Scholar 

  30. Harris M., Kudla S. S., Sweet W. J.: Theta dichotomy for unitary groups. J. Amer. Math. Soc. 9, 941–1004 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Harris M., Li J.-S.: A Lefschetz property for subvarieties of Shimura varieties. J. Algebraic Geom. 7, 77–122 (1998)

    MathSciNet  MATH  Google Scholar 

  32. He H., Hoffman J. W.: Picard groups of Siegel modular 3-folds and θ-liftings. J. Lie Theory 22, 769–801 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Hirzebruch F., Zagier D.: Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math. 36, 57–113 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Howe, R., θ-series and invariant theory, in Automorphic Forms, Representations and L-Functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., 33, pp. 275–285. Amer. Math. Soc., Providence, RI, 1979.

  35. Howe R.: Transcending classical invariant theory. J. Amer. Math. Soc. 2, 535–552 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ichino A.: A regularized Siegel–Weil formula for unitary groups. Math. Z. 247, 241–277 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jacquet, H., Shalika, J.A., A non-vanishing theorem for zeta functions of GL n . Invent. Math., 38 (1976/77), 1–16.

  38. Johnson J. F.: Lie algebra cohomology and the resolution of certain Harish-Chandra modules. Math. Ann. 267, 377–393 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kashiwara M., Vergne M.: On the Segal–Shale–Weil representations and harmonic polynomials. Invent. Math. 44, 1–47 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kottwitz R. E.: Points on some Shimura varieties over finite fields. J. Amer. Math. Soc. 5, , 373–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kottwitz, R. E. & Shelstad, D., Foundations of twisted endoscopy. Astérisque, 255 (1999), 190 pp.

  42. Kudla S. S.: Splitting metaplectic covers of dual reductive pairs. Israel J. Math. 87, 361–401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kudla S. S.: Algebraic cycles on Shimura varieties of orthogonal type. Duke Math. J. 86, 39–78 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kudla S. S., Millson J.J.: The theta correspondence and harmonic forms. I. Math. Ann. 274, 353–378 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kudla S. S., Millson J.J.: The theta correspondence and harmonic forms. II. Math. Ann. 277, 267–314 (1987)

    MathSciNet  MATH  Google Scholar 

  46. Kudla, S.S. & Millson, J.J. Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables. Inst. Hautes Études Sci. Publ. Math., 71 (1990), 121–172.

  47. Kudla S. S., Rallis S.: A regularized Siegel–Weil formula: the first term identity. Ann. of Math. 140, 1–80 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kudla, S. S. & Sweet, W. J., Jr., Degenerate principal series representations for U(n, n). Israel J. Math., 98 (1997), 253–306.

  49. Landherr W.: Äquivalenz Hermitescher Formenüber einem beliebigen algebraischen Zahlkörper. Abh. Math. Sem. Univ. Hamburg 11, 245–248 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  50. Langlands R. P., Shelstad D.: On the definition of transfer factors. Math. Ann. 278, 219–271 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li J.-S.: Nonvanishing theorems for the cohomology of certain arithmetic quotients. J. Reine Angew. Math. 428, 177–217 (1992)

    MathSciNet  MATH  Google Scholar 

  52. Matsushima Y.: A formula for the Betti numbers of compact locally symmetric Riemannian manifolds. J. Differential Geom. 1, 99–109 (1967)

    MathSciNet  MATH  Google Scholar 

  53. Milne, J. S., Canonical models of (mixed) Shimura varieties and automorphic vector bundles, in Automorphic Forms, Shimura Varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., 10, pp. 283–414. Academic Press, Boston, MA, 1990.

  54. Mínguez, A., Unramified representations of unitary groups, in On the Stabilization of the Trace Formula, Stab. Trace Formula Shimura Var. Arith. Appl., 1, pp. 389–410. Int. Press, Somerville, MA, 2011.

  55. Moeglin C.: Non nullité de certains relêvements par séries théta. J. Lie Theory, 7, 201–229 (1997)

    MathSciNet  Google Scholar 

  56. Moeglin C., Vignéras, M.-F. & Waldspurger, J.-L., Correspondances de Howe sur un corps p-adique. Lecture Notes in Mathematics, 1291. Springer, Berlin–Heidelberg, 1987.

  57. Moeglin C., Waldspurger J.-L.: Le spectre résiduel de GL(n). Ann. Sci. École Norm. Sup. 22, 605–674 (1989)

    MathSciNet  MATH  Google Scholar 

  58. Moeglin, C. & Waldspurger, J.-L.,Stabilisation de la formule des traces tordue X: stabilisation spectrale. Preprint, 2014. arXiv:1412.2981 [RT].

  59. Mok, C. P., Endoscopic classification of representations of quasi-split unitary groups. Mem. Amer. Math. Soc., 235 (2015), 248 pp.

  60. Ngô B. C.: Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci. 111, 1–169 (2010)

    Article  Google Scholar 

  61. Paul A.: Howe correspondence for real unitary groups. J. Funct. Anal. 159, 384–431 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  62. Rallis S.: On the Howe duality conjecture. Compos. Math. 51, 333–399 (1984)

    MathSciNet  MATH  Google Scholar 

  63. Salamanca-Riba S. A.: On the unitary dual of real reductive Lie groups and the A g (λ) modules: the strongly regular case. Duke Math. J. 96, 521–546 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  64. Shelstad D.: Embeddings of L-groups. Canad. J. Math. 33, 513–558 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  65. Shelstad D.: On geometric transfer in real twisted endoscopy. Ann. of Math. 176, 1919–1985 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tadić M.: Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case). Ann. Sci. École Norm. Sup. 19, 335–382 (1986)

    MathSciNet  MATH  Google Scholar 

  67. Tan V.: Poles of Siegel Eisenstein series on U(n,n). Canad. J. Math. 51, 164–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  68. Tate, J., Conjectures on algebraic cycles in l-adic cohomology, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, pp. 71–83. Amer. Math. Soc., Providence, RI, 1994.

  69. Tits, J., Reductive groups over local fields, in Automorphic Forms, Representations and L-Functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., 33, pp. 29–69. Amer. Math. Soc., Providence, RI, 1979.

  70. Vogan, D. A., Jr., The unitary dual of GL(n) over an Archimedean field. Invent. Math., 83 (1986), 449–505.

  71. Vogan, D. A., Jr. & Zuckerman, G. J., Unitary representations with nonzero cohomology. Compos. Math., 53 (1984), 51–90.

  72. Waldspurger, J.-L., L’endoscopie tordue n’est pas si tordue. Mem. Amer. Math. Soc., 194 (2008), 261 pp.

  73. Waldspurger J.-L.: Les facteurs de transfert pour les groupes classiques: un formulaire. Manuscripta Math. 133, 41–82 (2010)

    Article  MathSciNet  Google Scholar 

  74. Waldspurger, J.-L., La formule des traces locale tordue. To appear in Mem. Amer. Math. Soc. arXiv:1205.1100 [RT].

  75. Waldspurger, J.-L., Stabilisation de la formule des traces tordue III: intégrales orbitales et endoscopie sur un corps local non-archimédien; réductions et preuves. Preprint, 2013. arXiv:1402.2753 [RT].

  76. Weil A.: Sur certains groupes d’opérateurs unitaires. Acta Math., 111, 143–211 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  77. Weil A.: Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math. 113, 1–87 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bergeron.

Additional information

In memory of Raquel Maritza Gilbert, beloved wife of the second author.

N. B. is a member of the Institut Universitaire de France.

J. M. was partially supported by NSF grant DMS-1206999.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergeron, N., Millson, J. & Moeglin, C. The Hodge conjecture and arithmetic quotients of complex balls. Acta Math 216, 1–125 (2016). https://doi.org/10.1007/s11511-016-0136-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-016-0136-2

Navigation